• 제목/요약/키워드: R2R XRD

Search Result 479, Processing Time 0.023 seconds

Microwave Dielectric Properties $BaTi_{4}O_{9}$ Ceramics with Addition of CoO (CoO 첨가에 따른 $BaTi_{4}O_{9}$ 세라믹스의 마이크로파 유전특성)

  • Choi, Eui-Sun;Lee, Moon-Kee;Ryu, Ki-Won;Bae, Seon-Gi;Lee, Young-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.284-287
    • /
    • 2002
  • The $BaTi_{4}O_{9}$ ceramics with CoO(0.5wt%) were prepared by the conventional mixed oxide method. The sintering temperature and time were $1350^{\circ}C$, 3hr., respectively. The structural properties were investigated with sintering temperature by XRD. Also the microwave dielectric properties of the $BaTi_{4}O_{9}$ ceramics were studied. According to the X -ray diffraction patte구 of the $BaTi_{4}O_{9}$ ceramics with CoO(0.5wt%), the orthorhombic $BaTi_{4}O_{9}$ structure was appeared. In the case of $BaTi_{4}O_{9}$ ceramics with CoO(0.5wt%), dielectric constant $(\varepsilon_{r})$, quality factor$(Q{\times}f_r)$ and temperature coefficient of resonant frequency$(\tau_{f})$ were 40.8, 43,270 and $2.5ppm/^{\circ}C$, respectively.ࠀࠀ Ѐ耀 Āࠀ 耀耀  ࠀက@ĀĀȀЀĀကЀကࠀ耀Ȁ@ࠀЀЀ€Ȁ耀 @䀀က 䀀Ѐ€耀 Ȁ @ ࠀЀЀကȀȀЀ Āက蠀

  • PDF

Preparation of ${K_3}{Li_2}{Nb_5}{O_{15}}$(KLN) Thin Films by Heat Treatment Methods (열처리방법에 따른 ${K_3}{Li_2}{Nb_5}{O_{15}}$(KLN)박막의 제작)

  • 김광태;박명식;이동욱;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.731-738
    • /
    • 2000
  • KLN(K3Li2Nb5O15) has attracted a great deal of attention for their potential usefulness in piezoelectric, electro-optic, nonlinear optic, and pyroelectirc devices. Especially, the KLN single crystal has been studied in the field of optics and electronics. However it is hard to produce good quality single crystals due to the crack propagation during crystal growing. One of the solutions of this problem is prepartion of thin film. But the intensive study has not been conducted so far. In this study, after the KLN thin film were prepared by R.F. magnetron Sputtering method on SiO2/Si substrate, the post-annealing methods of RTA(rapid thermal annealin) and IPA(insitu post annealing) were employed. The deposition condition of KLN thin film was RF power(100 W), Working pressure(100 mtorr). The commonness of both RAT and IPA was that the higher were deposition and post annealing temperature, the higher was the intensity of XRD but the less surface roughness. The difference of post-annealing methods affected XRD phase and surface condition very much. And in IPA process, the influence of O2 had much effect on the formation of KLN phase.

  • PDF

Humidity Characteristics of $SnO_2/TiO_2$ Thick Film Devices ($SnO_2/TiO_2$후막소자의 감습특성)

  • Park, Hyo-Deok;Lee, Deok-Dong
    • Korean Journal of Materials Research
    • /
    • v.2 no.3
    • /
    • pp.163-171
    • /
    • 1992
  • The $SnO_2/TiO_2$ thick film type humidity sensing devices containing 5 to 50 wt% $TiO_2$ have been fabricated by a typical screen printing technique. The surface crystal structure and microstructure were investigated by XRD, SEM and FTIR analyses. And the measurement of sensing characteristics of the thick film devices have been carried out. The crystalline phase of the thick flus were mainly identified as $(SnO_2){\cdot}6T$ crystal structure with XRD analysis, and the thick films sintered at $1300^{\circ}C$ showed an average particle size of $2.0{\mu}m$. The $SnO_2/TiO_2$ device sintered at $1300^{\circ}C$ containing 10 wt% $TiO_2$ showed high sensitivity to humidity in the range of R.H. 20-90%.

  • PDF

Recovery of Nickel from Waste Iron-Nickel Alloy Etchant and Fabrication of Nickel Powder (에칭 폐액으로부터 용매추출과 가수분해를 이용한 니켈분말제조에 관한 연구)

  • Lee, Seokhwan;Chae, Byungman;Lee, Sangwoo;Lee, Seunghwan
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.14-18
    • /
    • 2019
  • In general after the etching process, waste etching solution contains metals. (ex. Nickel (Ni), Chromium (Cr), Zinc (Zn), etc.) In this work, we proposed a recycling process for waste etching solution and refining from waste liquid contained nickel to make nickel metal nano powder. At first, the neutralization agent was experimentally selected through the hydrolysis of impurities such as iron by adjusting the pH. We selected sodium hydroxide solution as a neutralizing agent, and removed impurities such as iron by pH = 4. And then, metal ions (ex. Manganese (Mn) and Zinc (Zn), etc.) remain as impurities were refined by D2EHPA (Di-(2-ethylhexyl) phosphoric acid). The nickel powders were synthesized by liquid phase reduction method with hydrazine ($N_2H_4$) and sodium hydroxide (NaOH). The resulting nickel chloride solution and nickel metal powder has high purity ( > 99%). The purity of nickel chloride solution and nickel nano powders were measured by EDTA (ethylenediaminetetraacetic) titration method with ICP-OES (inductively coupled plasma optical emission spectrometer). FE-SEM (field emission scanning electron microscopy) was used to investigate the morphology, particle size and crystal structure of the nickel metal nano powder. The structural properties of the nickel nano powder were characterized by XRD (X-ray diffraction) and TEM (transmission electron microscopy).

Thermal Stability Improvement of the Ni Germano-silicide formed by a novel structure Ni/Co/TiN using 2-step RTP for Nano-Scale CMOS Technology

  • Huang Bin-Feng;Oh Soon-Young;Yun Jang-Gn;Kim Yong-Jin;Ji Hee-Hwan;Kim Yong-Goo;Cha Han-Seob;Heo Sang-Bum;Lee Jeong-Gun;Kim Yeong-Cheol;Lee Hi-Deok
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.371-374
    • /
    • 2004
  • In this paper, Ni Germane-silicide formed on undoped $Si_{0.8}Ge_{0.2}$ as well as source/drain dopants doped $Si_{0.8}Ge_{0.2}$ was characterized by the four-point probe for sheet resistance. x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FESEM). Low resistive NiSiGe is formed by one step RTP (Rapid thermal processing) with temperature range at $500{\~}700^{\circ}C$. To enhance the thermal stability of Ni Germane-silicide, Ni/Co/TiN structure with different Co concentration were studied in this work. Low sheet resistance was obtained by Ni/Co/TiN structure with high Co concentration using 2-step RTP and it almost keeps the same low sheet resistance even after furnace annealing at $650^{\circ}C$ for 30 min.

  • PDF

Effects of Vacuum Annealing on the Structural Properties of Sputtered Vanadium Oxide Thin Films (스퍼터된 바나듐 산화막의 구조적 특성에 미치는 진공 어닐링의 효과)

  • Whang, In-Soo;Choi, Bok-Gil;Choi, Chang-Kyu;Kwon, Kwang-Ho;Kim, Sung-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.70-73
    • /
    • 2002
  • Thin films of vanadium oxide($VO_{x}$) have been deposited by r.f. magnetron sputtering from $V_{2}O_{5}$ target in gas mixture of argon and oxygen. The oxygen/(oxygen+argon) partial pressure ratio of 0% and 8% is adopted. Crystal structure, chemical composition, molecular structure and optical properties of films sputter-deposited under different oxygen gas pressures and in-situ annealed in vacuum at $400^{\circ}C$ for 1h and 4h are characterized through XRD. RBS, FTlR and optical absorption measurements. The films as-deposited are amorphous and those annealed for time longer than 4h are polycrystalline. $V_{2}O_{5}$ and lower oxides co-exist in sputter-deposited films and as the oxygen partial pressure is increased the films become more stoichiometric $V_{2}O_{5}$. When annealed at $400^{\circ}C$, the as-deposited films are reduced to a lower oxide. It is observed that the oxygen atoms located on the V-O plane of $V_{2}O_{5}$ layer participate more readily in the oxidation and reduction process. The optical transmission of the films annealed in vacuum decreases considerably than the as-deposited films and the optical absorption of all the films increases rapidly between 400 and 550nm.

  • PDF

Low Cost Alcoholic Breath Sensor Based on SnO2 Modified with CNTs and Graphene

  • Morsy, M.;Yahia, I. S.;Zahran, H.Y.;Ibrahim, M.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1437-1443
    • /
    • 2018
  • In this work, $SnO_2$ modified with reduced graphene oxide (rGO) and carbon nanotubes (CNTs) separately and combined sensitized by using the co-precipitation method and their sensing behavior toward ethanol vapor at room temperature were investigated. An interdigitated electrode (IDE) gold substrate is very expensive compared to a fluorine doped tin oxide (FTO) substrate; hence, we used the latter to reduce the fabrication cost. The structure and the morphology of the studied materials were characterized by using differential thermal analyses (DTA) and thermogravimetric analysis (TGA), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller surface area and Barrett-Joyner-Halenda (BJH) pore size measurements. The studied composites were subjected to ethanol in its gas phase at concentrations from 10 to 200 ppm. The present composites showed high-performance sensitivity for many reasons: the incorporation of $SnO_2$ and CNTs which prevents the agglomeration of rGO sheets, the formation of a 3D mesopourus structure and an increase in the surface area. The decoration with rGO and CNTs led to more active sites, such as vacancies, which increased the adsorption of ethanol gas. In addition, the mesopore structure and the nano size of the $SnO_2$ particles allowed an efficient diffusion of gases to the active sites. Based on these results, the present composites should be considered as efficient and low-cost sensors for alcohol.

The Influence of Ag Thickness on the Electrical and Optical Properties of ZnO/Ag/SnO2 Tri-layer Films

  • Park, Yun-Je;Choi, Jin-Young;Choe, Su-Hyeon;Kim, Yu-Sung;Cha, Byung-Chul;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.145-149
    • /
    • 2019
  • Transparent and conductive ZnO/Ag/SnO2 (ZAS) tri-layer films were deposited onto glass substrates at room temperature by using radio frequency (RF) and direct current (DC) magnetron sputtering. The thickness values of the ZnO and $SnO_2$ thin films were kept constant at 50 nm and the value for Ag interlayer was varied as 5, 10, 15, and 20 nm. In the XRD pattern the diffraction peaks were identified as the (002) and (103) planes of ZnO, while the (111), (200), (220), and (311) planes could be attributed to the Ag interlayer. The optical transmittance and electrical resistivity were dependent on the thickness of the Ag interlayer. The ZAS films with a 10 nm thick Ag interlayer exhibited a higher figure of merit than the other ZAS films prepared in this study. From the observed results, a ZAS film with a 10 nm thick Ag interlayer was believed to be an alternative transparent electrode candidate for various opto-electrical devices.

Crystallographic Properties of ZnO/AZO thin Film Prepared by FTS method (FTS법으로 제작한 ZnO/AZO 박막의 결정학적 특성)

  • 금민종;강태영;최형욱;박용서;김경환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.979-982
    • /
    • 2004
  • The ZnO thin films were prepared by the FTS (facing target sputtering) system, which enables to provide high density plasma and a high deposition rate at a low working gas pressure. We introduced the AZO thin film in order to improve the crystallographic properties of ZnO thin film because of the AZO(ZnO:Al) thin film has an equal crystal structure to the ZnO thin film. ZnO/AZO thin films were deposited at a different oxygen gas flow ratio, R.T. 2mTorr working pressure and a 0.8A sputtering current. The film thickness and c-axis preferred orientation of ZnO/AZO/glass thin films were measured by ${\alpha}$-step and an x-ray diffraction (XRD) instrument. In the results, we could prepare the ZnO thin film with c-axis preferred orientation of about 6$^{\circ}$ on substrate temperature R.T. at O$_2$ gas flo rate 0.5.

Deposition and Characteristics of TiN Thin Films by Atomic Layer Epitaxy (ALE 법에 의한 TiN 박막의 증착 및 특성)

  • Kim, Dong-Jin;Jung, Young-Bae;Lee, Myung-Bok;Lee, Jung-Hee;Lee, Yong-Hyun;Hahm, Sung-Ho;Lee, Jong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.43-49
    • /
    • 2000
  • The TiN thin films were deposited by ALE(atomic layer epitaxy) on (100) silicon substrate. The TiN thin films were characterized by means of XRD, 4-point probe, AFM, AES and SEM. TEMAT(terakis(ethyl methy lamino)titanium) and $NH_3$ were injected into the reactor in sequence of TEMAT-$N_2-NH_3-N_2$ to ensure a saturated surface reaction. As a result, the depostion rate of the TiN film was controlled by self-limiting growth mechanism at temperature range form 150 to 220 $^{\circ}C$. Deposited TiN films, all of which show amorphous structure, had a fixed deposition rate of 4.5 ${\AA}$/cycle. The resistivity of 210 ~ 230 ${\mu}{\Omega}{\cdot}$cm and the surface r.m.s. roughness of 7.9 ~ 9.3 ${\AA}$ were measured. When TiN film of 2000 ${\AA}$ were deposited, a excellent step coverage were observed in a trench structure of 0.43${\mu}m$ contacts with 6:1 aspect ratio.

  • PDF