• 제목/요약/키워드: R&D performance evaluation

검색결과 645건 처리시간 0.036초

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

Escherichia coli 와 Bacillus cereus에 오염된 상토, 토양 및 관개용수가 상추의 미생물 안전에 미치는 영향 (Effect of Medium, Soil, and Irrigation Water Contaminated with Escherichia coli and Bacillus cereus on the Microbiological Safety of Lettuce)

  • 김세리;이서현;김원일;김병석;김준환;정덕화;윤종철;류경열
    • 원예과학기술지
    • /
    • 제30권4호
    • /
    • pp.442-448
    • /
    • 2012
  • 최근 상추와 같은 농산물에 의한 식중독사고가 발생하고 있으며 그 원인으로 병원성 미생물에 오염된 퇴비, 관개용수의 사용이라고 보고되고 있다. 따라서 본 연구는 육묘단계의 상토, 재배과정의 토양, 관개용수의 Escherichia coli와 Bacillus cereus 오염이 상추의 안전성에 미치는 영향을 구명하고자 수행하였다. 이를 위하여 상토는 두 균주로 7.5log CFU/g 수준으로 오염시킨 후 상추종자를 파종하고 28일간 생육시켰고, 오염되지 않은 토양과 6.0log CFU/g 수준으로 오염시킨 토양에 오염된 상토에서 21일간 자란 묘를 이식하고 49일간 인공기상동 ($25^{\circ}C$, 상대습도 70-80%)에서 생육시켰다. 또한 8.0log CFU/mL로 오염된 관개용수로 지표면관수법과 살수관수법으로 상추에 관수하고 40일간 병원성 미생물의 오염 및 생존을 조사하였다. 그 결과 육묘기의 상토와 상추 중 E. coli와 B. cereus는 시간이 경과함에 따라 점차 감소하였지만 육묘기 내내 생존 가능한 것으로 확인되었다. 토양에서는 42일간 E. coli와 B. cereus가 6.0log CFU/g 내외로 유의적인 감소 없이 유지되고 있었다. 오염된 토양에 이식된 상추는 21일째까지 E. coli와 B. cereus의 농도가 4.0log CFU/g 이상 유지되었고 이식 후 42일까지도 검출되었다. 또한 살수관수법으로 처리한 구에서 지표면관수법으로 처리한 구보다 상추의 오염수준이 5.0log CFU/g 정도 높았다. 따라서 본 연구의 결과는 병원성미생물에 오염된 상토, 토양, 관개용수는 농산물의 병원성미생물 오염에 직접적인 원인이 될 수 있음을 시사한다.

시기별 엽채류의 미생물 오염도와 유통 조건 조사 - 들깻잎과 상추를 중심으로 - (Investigation of Microbial Contamination Levels of Leafy Greens and Its Distributing Conditions at Different Time - Focused on Perilla leaf and Lettuce -)

  • 김원일;정향미;김세리;박경훈;김병석;윤종철;류경열
    • 한국식품위생안전성학회지
    • /
    • 제27권3호
    • /
    • pp.277-284
    • /
    • 2012
  • 본 연구는 시기별로 생산지, 판매지(대형마트, 재래시장)에서 수집한 들깻잎과 상추의 미생물 오염도를 분석하고 시기별 유통 온 습도 조사와 보관온도가 대상 작물에 존재하는 미생물 밀도변화에 미치는 영향을 검정하였다. 2월, 5월, 8월, 11월에 충청남도 금산군 추부면 소재의 들깻잎, 상추 생산농가와 경기도 수원시 소재의 대형마트, 재래시장에서 들깻잎, 상추 시료를 수집하여 총호기성균, 대장균군, B. cereus의 수를 정량적으로 분석하였고, E. coli O157:H7, Salmonella spp., L. monocytogenes, S. aureus를 정성적으로 분석하였다. 동시에 생산지에서 물류센터로 운송되는 유통 온 습도를 측정하였다. 비교적 기온이 높은 5월, 8월에 수집한 엽채류 시료의 미생물 오염도는 2월, 11월보다 상대적으로 높은 것으로 나타났다. 생산지와 판매지의 미생물 오염도는 생산지에 비해 판매지에서 높게 나타나는 경우가 많았으며 대형마트과 재래시장 간에는 오염도 차이에 있어서 일정한 경향을 보이지 않았다. 조사시기에 상관없이 엽채류가 수확되어 포장된 이후부터는 90% 이상의 높은 상대습도를 보이고, 유통온도는 5월, 8월에 각각 평균 18.2, $23.2^{\circ}C$$15^{\circ}C$ 이상으로 유지되는 것으로 나타났다. 엽채류 보관온도에 따른 background microflora, E. coli O157:H7, B. cereus의 밀도변화는 대부분 $20^{\circ}C$ 이상의 온도로 보관될 경우 초기밀도에 비해 유의하게 증가하는 것을 보였다. 따라서 본 연구에서 수행한 엽채류의 미생물 오염도 조사는 엽채류의 미생물위해성평가(MRA)의 활용될 수 있으며, 엽채류 유통환경 조사와 보관온도에 따른 미생물 변화 조사는 엽채류의 유통 및 보관 기준을 설정하는데 있어 기초적인 자료로 활용될 수 있을 것이다.

참외 시설 재배 시 고온에서의 환기 처리에 의한 상대습도 상승과 흰가루병, 담배가루이, 응애 방제 및 개화 억제 (Ventilation at Supra-Optimal Temperature Leading High Relative Humidity Controls Powdery Mildew, Silverleaf Whitefly, Mite and Inhibits the Flowering of Korean Melon in a Greenhouse Cultivation)

  • 서태철;김진현;김승유;조명환;최만권;류희룡;신현호;이충근
    • 생물환경조절학회지
    • /
    • 제31권1호
    • /
    • pp.43-51
    • /
    • 2022
  • 본 연구는 참외 재배 지에서 흰가루병, 담배가루이 및 두점박이응애가 동시에 발생하였을 때 45, 40, 35℃(대조구)의 온도에서 측창으로 환기 처리 시, 온실 내 온·습도의 변화, 병충해 발생과 잎말림, 그리고 개화조절에 미치는 효과를 검토하였다. 3월 3일 '히든파워' 대목에 접붙여진 '알찬꿀' 참외를 40cm 간격으로 격리상에 심었고, 위에 언급한 병해충이 모든 처리구에서 발생한 6월 18일부터 7월 13일까지 처리하였다. 온실의 온도는 맑은 날에는 설정 온도 지점까지 증가되었고, 45℃ 환기 처리에서 고온 고습이 약 9시간 동안 유지되었다. 주간 최고 기온과 최저 상대습도 차이는 45℃ 환기 처리에서 가장 높았다. 환기 처리 11일 후에는 흰가루병과 두점박이응애 피해가 45℃ 환기 처리에서 거의 회복되었지만 40℃와 35℃에서는 그렇지 않았다. 처리 14일 후, 담배가루이와 두점박이 응애 밀도는 45℃에서 유의하게 감소하였으나 흰가루병 증상은 유의하게 감소하지는 않았다. 잎말림은 고온에서 유발되었으나 45℃에서도 심하지 않았다. 처리 26일 후, 새로 나온 줄기의 15 마디의 개화수를 조사한 결과, 45℃에서 암꽃이 전혀 나오지 않았고 수꽃은 1.2개로 나타났다. 이상의 결과는, 고온기에 45℃의 고온에서 2-3주간 환기 처리는 온실 내부의 고온 고습을 유도하여 흰가루병, 담배가루이, 두점박이응애를 통제하고, 개화를 억제하여 참외의 영양 생장을 회복할 수 있는 방법으로 사료되었다.

연동온실 내 위치별 일사량에 따른 토마토의 생육 및 수량 비교 (Comparison of Tomato Growth and Yield according to Solar Radiation by Location in Multi-span Greenhouses)

  • 신현호;최만권;류희룡;조명환;김진현;서태철;유인호;김승유;이충근
    • 생물환경조절학회지
    • /
    • 제31권4호
    • /
    • pp.504-512
    • /
    • 2022
  • 본 연구에서는 연동온실의 골조로 인한 내부 광 분포를 검토하기 위하여 위치별(중앙부 및 측면부) 일사량을 실측하고, 오전(08:30-12:30)과 오후(12:35-16:30)로 시간대를 구분하여 일사량, 광 투과율 및 일 적산일사량을 분석하였다. 또한 토마토의 생육 및 수확량을 위치별로 비교하였다. 오전일 때 중앙부와 측면부의 일사량은 각각 275.2W·m-2, 314.9W·m-2이고, 오후일 때는 각각 278.1W·m-2, 313.9W·m-2로 측면부보다 중앙부가 오전은 12.6%, 오후는 11.4% 낮았고, 광 투과율과 일 적산일사량도 중앙부가 낮게 나타났다. 생육 특성에 있어서는 첫번째 조사의 엽장과 엽폭을 제외하고는 조사 종료일까지 유의미한 차이가 없었다. 토마토의 최종 주당 평균 수확량은 재배 위치에 따라 중앙부 4,828g, 측면부 4,851g으로 유의미한 차이는 없었고, 중앙부가 0.5% 적게 나타났다. 토마토의 광보상점은 60W·m-2이고 광포화점은 281W·m-2로 중앙부의 시간대별 일사량은 광보상점보다는 높고, 광포화점보다는 낮으나 그 차이가 크지 않아 온실 내 위치에 따른 생육 및 수확량의 차이가 미미한 것으로 판단하였다. 향후 이 검토 결과를 포함하여 온실을 설계할 때 광 환경을 고려한 설계를 위해 온실의 설치 방향, 위치 및 지붕 경사도 등에 따른 온실 내 광 분포 분석이 필요하다.