• Title/Summary/Keyword: Quercus mongolica stand

Search Result 94, Processing Time 0.018 seconds

Aboveground and Soil Carbon Storages in Quercus mongolica and Quercus variabilis Natural Forest Ecosystems in Chungju (충주지역(忠州地域)의 신갈나무와 굴참나무 천연림(天然林) 생태계(生態系)의 지상부(地上部) 및 토양(土壤) 중(中) 탄소고정(炭素固定)에 관(關)한 연구(硏究))

  • Park, Gwan-Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.1
    • /
    • pp.93-100
    • /
    • 1999
  • This study has been carried out to estimate aboveground and soil carbon contents in an average 39-year-old Quercus mongolica and 40-year-old Quercus variabilis stands in Chungju, Chungbuk. Ten sample trees were cut in each forest and soil samples were collected. Aboveground carbon content was estimated by the equation model $Wt=aD^b$ where Wt is oven-dry weight in kg and D is DBH in cm. Total aboveground carbon content was 48.85tonC/ha in Quercus mongolica stand and 57.49tonC/ha in Quercus variabilis stand. The proportion of each tree component to total aboveground carbon content was high in order of bolewood, branches, bolebark, and leaves in the two forests. Aboveground net primary production was estimated at 5.88tonC/ha in Quercus mongolica stand and 5.12tonC/ha in Quercus variabilis stand. Soil carbon content was 67.0tonC/ha in Quercus mongolica stand, 67.8tonC/ha in Quercus variabilis stand, and 54.7tonC/ha in Pinus densiflora stand. There was no significant difference in soil carbon content among the three forests.

  • PDF

Classification of Quercus mongolica Stand Types at Mt. Joongwang, Kangwon-Do and Determination of Proper Future Tree Density for Forest Tending Work (중왕산(中旺山) 지역(地域) 신갈나무림(林)의 임분형(林分形) 구분(區分) 및 육림작업(育林作業)에 적절(適切)한 미래목(未來木) 본수(本數)의 결정(決定))

  • Choi, Seon Deok;Lee, Don Koo;Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.4
    • /
    • pp.631-641
    • /
    • 1998
  • The objectives of this study were 1) to classify the types of Quercus mongolica stands at Mt. Joongwang and compare their quality, and 2) to determine the proper future tree number of Q. mongolica per ha and the appropriate distance between the future trees. The results from this study were as follows : Q. mongolica stands at Mt. Joongwang was classified into four types, pure Q. mongolica stand as stand type I, Q. mongolica - hardwood stand as stand type II, Q. mongolica - Pines densiflora stand as stand type III, Hardwood - Q. mongolica stand as stand type IV, according to mixture rate in stand volume. Stand type IV showed the best quality stem of Q. mongolica among the stand types, and the stem quality of Q. mongolica in Q. mongolica stand mixed with hardwood as stand types II and IV was better than those in pure Q. mongolica stand as stand type I and in Q. mongolica - P. densiflora stand as stand type III. If the management goal for Q. mongolica stand is to produce its high quality-timber, it is desirable to sustain proper mixture rate of Q. mongolica with another hardwoods. The proper number of future trees in pure Q. mongolica stand as stand type I was 122trees/ha and reasonable distance between the future trees was 9.15m. The distance between future trees in other stand types was 7.2m to 9.3m for stand types II and IV, while 8.0m for stand type III. Thus, the classification of Q. mongolica stand type based on stand character and maturity, and proper stem number of future tree and optimum distance between future trees would be a useful forest tending work.

  • PDF

The Spatial Distribution of Quercus mongolica and Its Association with Other Tree Species in Two Quercus mongolica Stands in Mt. Jiri, Korea

  • Jang, Woong-Soon;Park, Pil-Sun;Han, Ah-Reum;Kim, Kyung-Youn;Kim, Myung-Pil;Park, Hak-Ki
    • Journal of Ecology and Environment
    • /
    • v.33 no.1
    • /
    • pp.67-77
    • /
    • 2010
  • Stand structure and spatial associations of the dominant tree species in Quercus mongolica stands were investigated to understand interspecific relationships and the persistent dominance of Q. mongolica. We examined the species composition, DBH (diameter at breast height) distribution, and spatial distribution of trees (${\geq}\;2.5\;cm$ DBH) in two permanent $100\;m\;{\times}\;100\;m$ plots in Q. mongolica-dominant stands on the western part of Mt. Jiri. Ripley's K-function was used to characterize the spatial patterns and associations of dominant tree species. Q. mongolica showed a continuous and reverse-J shaped DBH distribution with clumped spatial distribution in both study sites. Q. mongolica and Abies koreana exhibited a negative association implying potential interspecific competition. The positive spatial association between Q. mongolica and Alnus hirsuta var. sibirica and Fraxinus sieboldiana were affected by site characteristics: limited habitat conditions with a large proportion of rock surface. Our results suggest that interactions among species were complex and ranged from positive to negative. Differences in stand and site characteristics and regeneration mechanisms among the species play an important role in regulating their spatial distribution patterns, while competition between individuals also contributes to spatial patterning of these communities. The high density and the early developmental stage of spatial distribution and structural characteristics of Q. mongolica and the relatively low importance values of other species in the stands imply that Q. mongolica will remain dominant in the study sites in the near future.

Carbon Storage in an Age-Sequence of Temperate Quercus mongolica Stands in Central Korea

  • Kim, Sung-geun;Kwon, Boram;Son, Yowhan;Yi, Myong Jong
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.6
    • /
    • pp.472-480
    • /
    • 2018
  • This study was conducted to estimate carbon storage in Quercus mongolica stands based on stand age class, and to provide basic data on the carbon balance of broad-leaved forests of Korea. The research was conducted at the experimental forest of Kangwon National University, Hongcheon-gun County, Gangwon-do Province, Korea. Three plots were set up in each of three Q. mongolica forest stands (III, V, and VII) to estimate the amount of carbon stored in Q. mongolica aboveground vegetation, coarse woody debris (CWD), organic layer, mineral soil, and litterfall. The carbon storage of the aboveground vegetation increased with an increase in stand age, while the carbon storage ratio of stems decreased. The carbon storage of the organic layer, CWD, and litterfall did not show any significant differences among age classes. In addition, the carbon concentration and storage in the forest soils decreased with depth, and there were no differences among age classes for any soil horizon. Finally, the total carbon storage in the III, V, and VII stands of Q. mongolica were 132.2, 241.1, and $374.4Mg\;C\;ha^{-1}$, respectively. In order to predict and effectively manage forest carbon dynamics in Korea, further study on deciduous forests with other tree species in different regions will be needed.

Site Characteristics and Stand Structure of Quercus mongolica Forests in the Republic of Korea (한국 신갈나무림의 입지환경과 임분구조)

  • Kwon, Ki Cheol;Han, Sung An;Lee, Don Koo;Jung, In Kwon;Seo, Yong Jin;Shin, Ku Taek;Jeon, Chang Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.100-107
    • /
    • 2022
  • Quercus mongolica is an important deciduous tree species in the Republic of Korea; it covers most of the total natural deciduous forest area in the country. In this study, the site characteristics and stand structure of Q. mongolica forests were investigated at sites where Q. mongolica occupied >50% of the total basal area during the 7th National Forest Inventory period (2016-2020). The total number of circular sample plots (400 m2) of Q. mongolica forests was 1,421. These forests were mainly dominant at >800 m above sea level (a.s.l). However, they were also distributed on north-facing slopes at <600 m a.s.l. and gradually on southern slopes with ascending altitudes. Quercus mongolica forests were distributed in silt loam, loam, or sandy loam soils with relatively high fertility. Dominant species distributed with Q. mongolica included Pinus densiflora, Quercus variabilis, Acer pseudosieboldianum, Fraxinus rhynchophylla, and Quercus serrata. Pinus densiflora and Q. variabilis grew in large DBH classes, Q. serrata grew in middle DBH classes, and A. pseudosieboldianum and F. rhynchophylla grew in small DBH classes. The dominant species distributed at the lower layer of Q. mongolica forests were Sasa borealis, Lindera obtusiloba, Rhododendron mucronulatum, Rhododendron schlippenbachii, Q. mongolica, and Fraxinus sieboldiana.

Regeneration Process in Gap of Quercus mongolica Forest (신갈나무림의 Gap 내 재생과정)

  • 강상준;최철수
    • The Korean Journal of Ecology
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • The pattern of gap regeneration and vegetational changes were carried out in gaps with different ages and in an intact forest in a Quercus mongolica (mongolian oak) stand located at Munsubong of Mt. Worak. In the early stage of gap formation, Lespedeza maximowiczii, Fraxinus rhynchophylla, Tripterygium regelii, Quercus mongolica, and Stephanadra incisa were dominants in shrub layers. The numbers of shrubs with smaller diameters at ground surface were abundant in the early stage of gap formation. On the other hand, as gap age increased, the number of individuals of Quercus mongolica and Fraxinus rhynchophylla forming tall tree layer decreased. However the diameter at ground surface of Quercus mongolica and Fraxinus rhynchophylla increased. There were few young Quercus mongolica, but those over 130 years old appeared in mature Quercus mongolica stands. The last regeneration episode ended about 130 years ago and the new one started 40 years ago in this study site. Considering the presence of Quercus mongolica below 40 years old in gap and the absence of Quercus mongolica from 40 to 130 years old in closed stand, it is concluded that Quercus mongilica forest is maintained by discontinued regeneration.

  • PDF

Dyamics of Plant Communities under Human Impact in the Green-Belt nearby Seoul -Structure of Forest Communities and Secondary Succession- (인간간섭하의 수도권 그린벨트 내 식물군집의 동태 - 삼림군집의 구조와 이차천이 -)

  • Kim, Joon-Ho;Yoonsoon Kang;Lee, Sueng-Woo;Cho, Kang-Hyun;Kim, Yongtaek;Saheon Ha;Min, Byeung-Mee
    • The Korean Journal of Ecology
    • /
    • v.12 no.4
    • /
    • pp.209-218
    • /
    • 1989
  • In order to elucidate the relationship among the several forest types in the green-sbelt nearby Seoul, the vascular plant species data collected preferentially from 52 stands were subjected to DCA (detrended correspondence analysis). Eight types of forests were arranged on the I/II plane fo DCA stand ordination, Quercus mongolica, Alnus hirsuta, Populus alba $\times$ glandulosa, Robinia pseudo-acacia, Pinus densiflora, Pinus koraiensis, Larix leptolepis and pinus rigida forest. Correlation analysis between the stand scores of DCA and environmental factors revealed that the axis I of DCA stand ordination implied the gradient of altitude, organic matter, total nitrogen and depth of A horizon. The axis II implied the gradient of total nitrogen and soluble phosphorus. The results of PCA (principal components analysis) by environmental data were in good agreement with that of DCA by floristic data. The recruitments of Quercus spp. Occurred in all kinds of forest types in the green-belt and their recruitments were closely related with altitutde: Quercus dentata in the foot. Quercus serrata in the midslope and Quercus mongolica in the uperslope of the mountain.

  • PDF

Growth, Biomass and Net Production of Quercus Species (I) - With Reference to Natural Stands of Quercus variabilis, Q. acutissima, Q. dentata, and Q. mongolica in Kwangju, Kyonggi-Do - (참나무류의 성장(成長) 및 물질생산(物質生産)에 관한 연구(硏究)(I) - 경기도(京畿道) 광주지방(廣州地方)의 굴참나무, 상수리나무, 떡갈나무, 신갈나무 천연임분(天然林分)을 대상으로 -)

  • Park, In Hyeop;Lee, Dong Koo;Lee, Kyung Joon;Moon, Gwang Sun
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.76-83
    • /
    • 1996
  • Four natural Quercus stands in Kwangju, Kyonggi-Do, of which ages ranging from 32 to 38 years old, were studied to compare their growth, biomass and net production. Ten $10m{\times}10m$ quadrats were set up and ten sample trees were harvested for dimension analysis in each stand. The largest mean DBH and height were shown by Q. acutissima stand, and followed by Q. variabilis stand, Q. mongolica stand, and Q. dentata stand in descending order. Tree density was the highest at Q. variabilis stand, and followed by Q. dentata stand, Q. mongolica stand, and Q. acutissima stand in descending order. Biomass was the largest at Q. acutissima stand(122.73t/ha), and followed by Q. variabilis stand(87.03t/ha), Q. mongolica stand(72.14t/ha), and Q. dentata stand(38.56t/ha) in descending order. Net production was the greatest at Q. mongolica stand(7.49t/ha/yr.), and followed by Q. variabilis stand(6.47t/ha/yr.), Q. acutissima stand(6.06t/ha/yr.), and Q. dentata stand(3.52t/ha/yr.) in descending order. The highest net assimilation ratio was exhibited by Q. acutissima stand (3.275), and followed by Q. variabilis stand(2.898), Q. mongolica stand(2.888), and Q. dentata stand (1.840) in descending order. The difference in net assimilation ratio and net production among four stands was caused by differences in their leaf biomass. The difference in net production and biomass among four stands was due to that in the distribution of net production among stems, branches and leaves.

  • PDF

Energy Content and Photosynthetic Efficiency of Quercus mongolica Stands in Korea

  • Kwon, Ki-Cheol;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.5
    • /
    • pp.562-568
    • /
    • 2006
  • This study was conducted to examine the energy content and photosynthetic efficiency of Quercus mongolica stands in Korea. Study sites were located in Mt. Joongwang, Gangwon-do (1,000 m and 800 m above sea level), Mt. Baekwoon, Jeollanam-do (800 m a.s.l.), Mt. Halla, Jeju-do (1,000 m a.s.l.), Mt. Taehwa, Gyeonggi-do (350 m a.s.l.), and Mt. Wolak, Chungcheongbuk-do (300 m a.s.l.). Total energy content and annual energy accumulation in Q. mongolica stands were 2,916-6,435 GJ/ha and 284-441 GJ/ha, respectively. Lower latitude (N.L.) stands of Q. mongolica showed higher energy contents than higher latitude stands, but Quercus stands in Mt. Baekwoon had higher annual energy accumulation than those in Mt. Halla located at a lower latitude. During the growing season, the photosynthetic efficiency of 60 to 70-year-old Q. mongolica stands ranged from 1.19 to 1.34% while that of 35-year-old stands did from 1.87 to 1.95%. There were no significant differences in photosynthetic efficiency among the latitudes because solar radiation was higher in low latitudes.

Biomass and Net Primary Productivity in Natural Forests of Quercus mongolica and Quercus variabilis (신갈나무와 굴참나무 천연림(天然林) 생태계(生態系)의 현존량(現存量) 및 물질(物質) 생산성(生産性)에 관한 연구)

  • Song, Cheel Young;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.3
    • /
    • pp.443-452
    • /
    • 1996
  • A study has been made to estimate biomass and NPP based on equation form of $Wt=aD^bH^c$ for Quercus variabilis and Quercus mongolica natural stands(Mean age; 67, 62yrs old) in Chungju. Equation form of $Wt=aD^bH^c$ was more adequate than $Wt=a(D^2H)^b$ and $Wt=aD^b$ for the estimation of the biomass and NPP. Individual biomass was compared using a paired t-test by tree component which showed no significant differences. Total aboveground biomass of Quercus mongolica was 130.6 t/ha and that of Quercus variabilis was 137.4 t/ha. Biomass of Q. mongolica was composed of foliage 5.1 t/ha(3.9%), dead branch 3.5 t/ha(2.7%), live branch 29.7 t/ha(23.0%), bolebark 16.2 t/ha(12.5%), and bolewood 74.9 t/ha(58.0%), and that of Q. variabilis was composed of foliage 3.8 t/ha(2.9%), dead branch 2.9 t/ha(2.2%), live branch 24.3 t/ha(18.4%), bolebark 20.4 t/ha(15.5%), and bolewood 80.4 t/ha(61.0%). Net primary production was 10.0 t/ha/yr in the Q. mongolica stand and 8.6 t/ha/yr in the Q. variabilis stand, respectively. Net primary production of Quercus forest in Chungju was very close to the mean NPP of the broadleaved forest of temperate zone.

  • PDF