• Title/Summary/Keyword: Quercus Glauca Thunb.

Search Result 7, Processing Time 0.021 seconds

Development of Diameter Growth Models by Thinning Intensity of Planted Quercus glauca Thunb. Stands

  • Jung, Su Young;Lee, Kwang Soo;Kim, Hyun Soo
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.6
    • /
    • pp.629-638
    • /
    • 2021
  • Background and objective: This study was conducted to develop diameter growth models for thinned Quercus glauca Thunb. (QGT) stands to inform production goals for treatment and provide the information necessary for the systematic management of this stands. Methods: This study was conducted on QGT stands, of which initial thinning was completed in 2013 to develop a treatment system. To analyze the tree growth and trait response for each thinning treatment, forestry surveys were conducted in 2014 and 2021, and a one-way analysis of variance (ANOVA) was executed. In addition, non-linear least squares regression of the PROC NLIN procedure was used to develop an optimal diameter growth model. Results: Based on growth and trait analyses, the height and height-to-diameter (H/D) ratio were not different according to treatment plot (p > .05). For the diameter of basal height (DBH), the heavy thinning (HT) treatment plot was significantly larger than the control plot (p < .05). As a result of the development of diameter growth models by treatment plot, the mean squared error (MSE) of the Gompertz polymorphic equation (control: 2.2381, light thinning: 0.8478, and heavy thinning: 0.8679) was the lowest in all treatment plots, and the Shapiro-Wilk statistic was found to follow a normal distribution (p > .95), so it was selected as an equation fit for the diameter growth model. Conclusion: The findings of this study provide basic data for the systematic management of Quercus glauca Thunb. stands. It is necessary to construct permanent sample plots (PSP) that consider stand status, location conditions, and climatic environments.

Evaluation and validation of stem volume models for Quercus glauca in the subtropical forest of Jeju Island, Korea

  • Seo, Yeon Ok;Lumbres, Roscinto Ian C.;Won, Hyun Kyu;Jung, Sung Cheol;Lee, Young Jin
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.485-491
    • /
    • 2015
  • This study was conducted to develop stem volume models for the volume estimation of Quercus glauca Thunb. in Jeju Island, Republic of Korea. Furthermore, this study validated the developed stem volume models using an independent dataset. A total of 167 trees were measured for their diameter at breast height (DBH), total height and stem volume using non-destructive sampling methods. Eighty percent of the dataset was used for the initial model development while the remaining 20% was used for model validation. The performance of the different models was evaluated using the following fit statistics: standard error of estimate (SEE), mean bias absolute mean deviation (AMD), coefficient of determination (R2), and root mean square error (RMSE). The AMD of the five models from the different DBH classes were determined using the validation dataset. Model 5 (V = aDbHc), which estimates volume using DBH and total height as predicting variables, had the best SEE (0.02745), AMD (0.01538), R2 (0.97603) and RMSE (0.02746). Overall, volume models with two independent variables (DBH and total height) performed better than those with only one (DBH) based on the model evaluation and validation. The models developed in this study can provide forest managers with accurate estimations for the stem volumes of Quercus glauca in the subtropical forests of Jeju Island, Korea.

Soil Respiration Rates in Cryptomeria japonica D. Don, Chamaecyparis obtusa Endl., and Quercus glauca Thunb. Stands (삼나무, 편백, 종가시나무 임분의 토양호흡에 관한 연구)

  • Gyeongrin Baek;Gyeongwon Baek;Byeonggil Choi;Hojin Kim;Jihyun Lee;Choonsig Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.2
    • /
    • pp.71-79
    • /
    • 2023
  • The quantification of soil respiration rates is important to understand carbon cycles of forest ecosystems. Soil respiration rates were assessed using Li-8100A soil flux system in one evergreen broadleaved (Quercus glauca Thunb.) and two coniferous (Cryptomeria japonica D. Don and Chamaecyparis obtusa Endl.) stands from May 2020 to April 2022 in southern Korea. Monthly variations of soil respiration rates were higher in the Q. glauca stand than in the C. japonica and the C. obtusa stands. The mean soil respiration rates were significantly higher in the Q. glauca stand (2.63µmol m-2 s-1) than in the C. japonica (0.93µmol m-2 s-1) and C. obtusa (0.99µmol m-2 s-1) stands. The three stands showed exponential relationships between soil respiration rates and soil temperature (R2 = 0.44-0.80). The sensitivity of temperature (Q10 values) to soil respiration rates was highest in the Q. glauca stand (5.13), followed by the C. obtusa (3.10) and C. japonica (2.58) stands. These results indicate that soil respiration rates can be increased more in evergreen broadleaved stands than in coniferous stands under enhanced soil temperature.

Annual Moisture Content Variation of Pinus banksiana and Quercus glauca (방크스소나무와 종가시나무의 연중함수율(年中含水率) 변이(變異))

  • Hong, Byung-Wha;Moon, Chang-Kuck
    • Journal of Korean Society of Forest Science
    • /
    • v.36 no.1
    • /
    • pp.5-8
    • /
    • 1977
  • Monthly and partial variation of moisture contents of Quercus glauca Thunb. and Pinus banksiana Lamb. are investigated. There are monthly and partial insignificant variations of air dried moisture contents in both woods. But in moisture contents in green, former showed minimum rate at middle part, maximum at upper one, seasonally minimum in spring and maximum in autumn, latter showed minimum at lower part, maximum at upper one, seasonally minimum in winter and maximum in summer.

  • PDF

Physiological Responses to Drought Stress of Seven Evergreen Hardwood Species (상록활엽수 7수종의 건조스트레스에 대한 생리적 반응)

  • Jin, Eon-Ju;Cho, Min-Gi;Bae, Eun-Ji;Park, Junhyeong;Lee, Kwang-Soo;Choi, Myung Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.397-407
    • /
    • 2017
  • This research aims to analyze and compare the drought resistance of 7 species of landscape trees commonly grown in Korea. The 7 species are: Camellia japonica, Rhaphiolepis indica, Quercus glauca, Machilus thunbergii, Daphniphyllum macropodum, Dendropanax morbifera and Cinnamomum camphora. In order to analyze their drought resistance, the samples were left without irrigation for 30 days (05/09/2016 ~ 05/10/2016), during which period their respective drought resistor, relative water content, electrolyte elution figures and proline content were measured. As the non-irrigation proceeded, C. camphora was the first to wither, followed by D. morbifera, then D. macropodum, then M. thunbergii, then Q. glauca, then R. indica then finally C. japonica. Of the 7 species, Q. glauca, C. japonica and R. indica can be considered highly drought resistant, since they survived for longer than 3 weeks without irrigation. Relative water content (RWC) plummeted dramatically after the first 15 days of non-irrigation. Whereas RWC readings of C. camphora, D. morbifera, D. macropodum and M. tunbergii dropped by 40% or more, the other 4 species reported a relatively low rate of decrease at 20% or lower. The Camellia japonica, the R. indica and Q. glauca, which were the species with relatively high drought resistance, showed low proline content and electrolyte elution figures, whereas those of C. camphora, D. macropodum, D. morbifera and M. tunbergii were higher. Analysis through the nonlinear regression analysis logistic model showed that non-irrigation proved fatal for the 7 sample species in a range of 22.7 to 37.6 days. The C. japonica, R. indica, Q. glauca and M. tunbergii demonstrated a high drought resistance of 30 days or longer, whereas C. camphora, D. morbifera and D. macropodum had a low resistance of 25 days or less to drought from lack of water. In conclusion, out of the 7 species of broad-leaved evergreen trees tested, C. japonica, R. indica and Q. glauca seem to be suitable for use as landscape trees, owing to their high drought resistance.

The Effect of Polypropylene Mulching Method on Growth of Quercus glauca Thunb. Seedling and Weed Treatments (부직포 멀칭 방식에 따른 종가시나무 묘목의 생장과 제초에 미치는 영향)

  • Sung, Chang-Hyun;Yoon, Jun-Hyuck;Jin, Eon-Ju;Bae, Eun-Ji
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.59-66
    • /
    • 2020
  • Recently, cultivation and management technologies have been needed to adapt due to climate change, which is causing abnormal weather conditions. One technique is to increase the utilization of evergreen broad-leaved species with high ornamental value. A total of five treatments were installed (1m×22.5m), including 60g/㎡ and 80g/㎡ using two types mulching material with an overlapping and hole-drilling mulching method and these were compared to un-mulching treatment a total of planted 92㎡ attheWol-aTestSiteForestattheForestforBiomaterialsResearchCenterinJinju-si, Gyeongsangnam-dofor 10monthsusing3-years-oldQuercusglaucaThunb. In comparison with the control site, the 60g/㎡ overlapping method was about 1.9 times higher than the root collar diameter, but there was no statistical significance between the treatments. Healthy seedlings were found to meet these conditions due to high biomass values and below and T/R ratios of 3.0 or lower and H/D ratios of 7.0 or lower. Comparing the values of LWR, SWR, and RWR, which can be evaluated for seedling due to the mulching treatments, as compared to the control, the growth of the ground areas including leaves and stems was enhanced, but the growth of the underground areas containing roots tended to have high control values. Based on this, the SQI value, which can be evaluated for the comprehensive quality of seedlings, was found to be significantly different between the control site and the mulching treatment sites, confirming that the growth and growth improvement effects were achieved with mulching treatments. The chlorophyll content analysis showed that there was a significant difference from the control site, and it was judged that weed generation in the control acted as an environmental stress, causing a decrease in chlorophyll content. It was found that the overlapping 80g/㎡ of polypropylene mulching material generated about 4 times fewer weeds than the control, and the manpower required for the mulching test field and weeding were equal at 3.3 people/100㎡/1 day. Mulching treatments have demonstrated a significant difference in the promotion of growth and quality of the seedlings and are judged as an alternative that can reduce the economic burden incurred by the purchase of the supplies and the manpower required to weed forestry plantations.

The Comparative Assessment of Cold Tolerance of Broad-leaved Evergreen Trees by Low Temperature Treatment (저온처리에 따른 국내 상록활엽수종의 내한성 비교 평가)

  • Jin, Eon-Ju;Yoon, Jun Hyuck;Bae, Eun-Ji;Choi, Myung Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.484-492
    • /
    • 2019
  • The aim of the present study was to compare the cold tolerance of seven different types of trees growing in southern Korea to select evergreen broad-leaved trees that can be used as street trees in large land areas experiencing climate change. The trees compared were the thorn tree, Cinnamomum camphora, Camellia japonica, Machilus thunbergii, Dendropanax morbifera, Daphniphyllum macropodum Miq., Quercus glauca Thunb., and Raphiolepis indica. When the trees were subjected to low temperature treatment, their electrolyte elution volume values appeared to increase with the decreases in the treatment temperature. The analysis of the cold tolerance of each type of tree was based on the estimated temperatures in the following order: C. japonica (-11.586℃) > R. indica (-9.348℃) > Q. glauca (-8.719℃) > M. thunbergii (-8.090℃) > D. macropodum (-7.409℃) > D. morbifera (-7.085℃) > C. camphora (-6.995℃). The relative cold tolerance difference found in the seven tree species was more than 5℃, as evaluated previously. In the Lauraceae family, the difference in cold tolerance was more than 2℃, even in the same species. The analysis showed that trees with excellent cold tolerance included Q. glauca Thunb., C. japonica, R. indica, and the thorn tree. This knowledge is required for the evaluation of the possibility of the survival of trees under cold temperature conditions in cities.