DOI QR코드

DOI QR Code

Physiological Responses to Drought Stress of Seven Evergreen Hardwood Species

상록활엽수 7수종의 건조스트레스에 대한 생리적 반응

  • Jin, Eon-Ju (Southern Forest Resources Research Center, National Institute of Forest Science) ;
  • Cho, Min-Gi (Southern Forest Resources Research Center, National Institute of Forest Science) ;
  • Bae, Eun-Ji (Southern Forest Resources Research Center, National Institute of Forest Science) ;
  • Park, Junhyeong (Southern Forest Resources Research Center, National Institute of Forest Science) ;
  • Lee, Kwang-Soo (Southern Forest Resources Research Center, National Institute of Forest Science) ;
  • Choi, Myung Suk (Division of Environmental Forest Science, Gyeongsang National University)
  • 진언주 (국립산림과학원 남부산림자원연구소) ;
  • 조민기 (국립산림과학원 남부산림자원연구소) ;
  • 배은지 (국립산림과학원 남부산림자원연구소) ;
  • 박준형 (국립산림과학원 남부산림자원연구소) ;
  • 이광수 (국립산림과학원 남부산림자원연구소) ;
  • 최명석 (경상대학교 환경산림과학부)
  • Received : 2017.07.24
  • Accepted : 2017.12.08
  • Published : 2017.12.31

Abstract

This research aims to analyze and compare the drought resistance of 7 species of landscape trees commonly grown in Korea. The 7 species are: Camellia japonica, Rhaphiolepis indica, Quercus glauca, Machilus thunbergii, Daphniphyllum macropodum, Dendropanax morbifera and Cinnamomum camphora. In order to analyze their drought resistance, the samples were left without irrigation for 30 days (05/09/2016 ~ 05/10/2016), during which period their respective drought resistor, relative water content, electrolyte elution figures and proline content were measured. As the non-irrigation proceeded, C. camphora was the first to wither, followed by D. morbifera, then D. macropodum, then M. thunbergii, then Q. glauca, then R. indica then finally C. japonica. Of the 7 species, Q. glauca, C. japonica and R. indica can be considered highly drought resistant, since they survived for longer than 3 weeks without irrigation. Relative water content (RWC) plummeted dramatically after the first 15 days of non-irrigation. Whereas RWC readings of C. camphora, D. morbifera, D. macropodum and M. tunbergii dropped by 40% or more, the other 4 species reported a relatively low rate of decrease at 20% or lower. The Camellia japonica, the R. indica and Q. glauca, which were the species with relatively high drought resistance, showed low proline content and electrolyte elution figures, whereas those of C. camphora, D. macropodum, D. morbifera and M. tunbergii were higher. Analysis through the nonlinear regression analysis logistic model showed that non-irrigation proved fatal for the 7 sample species in a range of 22.7 to 37.6 days. The C. japonica, R. indica, Q. glauca and M. tunbergii demonstrated a high drought resistance of 30 days or longer, whereas C. camphora, D. morbifera and D. macropodum had a low resistance of 25 days or less to drought from lack of water. In conclusion, out of the 7 species of broad-leaved evergreen trees tested, C. japonica, R. indica and Q. glauca seem to be suitable for use as landscape trees, owing to their high drought resistance.

본 연구는 현재 국내에서 조경수 및 가로수로 이용되고 있는 상록활엽수들 중 Cinnamomum camphora Sieb., Camellia japonica L., Quercus glauca Thunb., Machilus thunbergii., Dendropanax morbifera LEV., Daphniphyllum macropodum Miq.., Raphiolepis indica var. umbellata (Thunb.) Ohashi. 등 7 수종에 대해서 내건성을 비교분석하기 위해 진행되었다. 수종별 내건성을 분석하기 위하여 2016년 9월 5일~10월 5일까지 30일간 무관수 처리하였고 5일 간격으로 수종별 건중량, 잎의 상대함수량, 상대수분손실량, 전해질 용출 등을 측정하여 내건성을 비교하였다. 4가지 측정방법으로 비교한 결과 C. japonica > R. indica > Q. glauca > M. thunbergii, D. morbifera > D. macropodum > C. camphora 순으로 내건성이 강한 것으로 나타났다. 비선형 회귀분석의 로지스틱 모델을 사용하여 수종별 건조처리에 따른 치사기간을 분석한 결과 22.7~37.6일의 범위로 측정되었으며, C. japonica 37.6일, R. indica 36.8일, Q. glauca 35.3일, M. thunbergi 31.0일 등으로 30일 이상으로 높은 내건성을 보인 반면, C. camphora 22.7일, D. morbifera 27.5일, D. macropodum 22.8일로 수분결핍에 따른 건조저항성이 낮은 것으로 조사되었다. 즉, 상록활엽수 7수종 중 C. japonica, R. indica, Q. glauca는 수분스트레스에 저항하는 적응력을 보였기에 시기를 조정하여 식재하면 안정적인 가로수 조성이 가능할 것으로 판단된다.

Keywords

References

  1. Beadle, C.L. 1993. Grotth analysis. Photosynthesis and production in a changing environment, a filed and laboratiry manual. D.O. Hall, J.M.O. Scurlock. H.R. Bolhar-Nordenkampf, R. C. Leegood, and S. P. Long(Eds.), Chapman Hall, London, 36-46.
  2. Binzel, M.L., Hasegawa, P.M., Handa, A.K. and Bressan, R.A. 1985. Adaptation of tobacco cells to NaC1, Plant Physiol 79: 118-125. https://doi.org/10.1104/pp.79.1.118
  3. Chen, S.G. and Ding, Y. F. 2011. Measurement of drought tolerance based on rec and the logistic equation in 5 spiece of sedum. Jiangsu Agricultural Sciences 3: 227-230.
  4. Chen, J., Chen, Q., Pan, Y. and Huang, X. 2007. A study of he drought resistance of six wild bushes. Journal of Sichuan Forestry Science and Technology 28(5): 50-54.
  5. Choi, S.M. 2013. The study on evaluation of environmental tolerance and propagation for broad-leaved evergreen species.
  6. Delauney, A.J. and Verma, D.P.S. 1993. Proline biosynthesis and osmoregulation in plants. The Plant Journal 4(2): 215-223. https://doi.org/10.1046/j.1365-313X.1993.04020215.x
  7. Guo, Y.Q., Tang, S.M., Zhang, Y.H., Wang, K.M. and Xu, J.C. 2008. Study on drought resistance of some greenning plants grown on roofs. Chinese Journal of Tropical Acriculture. 28(3) : 29-31.
  8. Hare, P.D., Cress, W.A. and Staden, J.V. 1998. Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment, 21: 535-553. https://doi.org/10.1046/j.1365-3040.1998.00309.x
  9. Hong, Y.N. 2009. Introduction of Plant Physiology (4th) (eds. Hopkins, W. G., Huner, N. P. A.), pp. 230, 244, 246-248. World Science Publishing, Seoul, Korea.
  10. Hsiao, T.C. 1973. Plant responses to water stress, Annual Review of Plant Physiology. 24: 519-570. https://doi.org/10.1146/annurev.pp.24.060173.002511
  11. Ihm, B.S. 1993. Water Status and Photosynthetic Activities of Evergreen Broad-leaved Trees in Dadohae National Marine Park. Korean Journal Ecology and Environment. 16(3): 353-364.
  12. Kozlowski, T.T. and Pallardy, S.G. 2002. Acclimation and adaptive responses of woody plants to environmental stresses. The Botanical Review 68(2): 270-334. https://doi.org/10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2
  13. Kramer, P.J. and Boyer, J.S. 1995. Water Relations of Plants and Soils. Academic Press.
  14. Lee, E.H. 2004. An analysis of research trends regarding rooftop greening in korea. Journal Korean Environment Restoration & Revegetation Technology 7(4): 44-51. (in Korean with English abstract)
  15. Leiva, M.J. and Fernandez-Ales, R. 1998. Variability in seedling water status during drought within a Quercus ilex subsp. ballota population, and its relation to seedling morphology. Forest Ecology and Management. 111(2-3): 147-156. https://doi.org/10.1016/S0378-1127(98)00320-X
  16. Liu, J. and Zhu, J.K. 1997. Proline accumulation and salt-stress-induced gene expression in a salt hypersensitive mutant of Arabidopsis. Plant Physiol 114: 591-596. https://doi.org/10.1104/pp.114.2.591
  17. Oh, C.Y., Han, S.H., Kim, Y.Y. and Lee, J.C. 2005. Changes of drought tolerance and photosynthetic characteristics of Poplulus davidiana dode according to REG concentration. Korean Journal of Agricultural and Forest Meteorology 7(4): 296-302.
  18. Ritchie, G.A. 1984. Assessing seedling quality, in: Duryea, M.L., Landis, T.D. (Eds), Forest Nursery MANUAL 1 : Production of Bareroot Seedlings, Martinus Nijhoff Publishsrs, Netherlands, pp. 243-259.
  19. Rustad, L.E., Campbell, J.L., Marion, G.M. Norby, R.J., Mitchell, M.J., Hartley, A.E., Cornelissen, J.H.C. and Gurevitch, J. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126: 543-562. https://doi.org/10.1007/s004420000544
  20. Ryu. J.H., Lee, H.B., Kim, C.M., Jung, H.H. and Kim, K.S. 2014. Cold tolerance of ground cover plants for use as green roofs and walls. Korean Journal of Horticultural Science and Technology. 32(5): 590-599. https://doi.org/10.7235/hort.2014.14035
  21. Seki, M., Umezawa, T., Urano, K. and Shinozaki, K. 2007. Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology, 10: 296-302. https://doi.org/10.1016/j.pbi.2007.04.014
  22. Shin, C.S. 2011. Cold tolerance assessment of Lagerstromia indica and Pyracantha angustifolia with dormant branches. Journal of the Korean Institute of Landscape Architecture 39(6): 118-125. (in Korean with English abstract) https://doi.org/10.9715/KILA.2011.39.6.118
  23. Suh, J.T., Yoo, D.L., Lee, H.S., Lee, H.K., Nam, C.W., Ryn, S.Y. and Song, J.S. 2006. Selection of Drought Tolerance Wild-flowers Using of Flowerpot and Rooftop Plant. Korean Society for People, Plants and Environment 9(3): 1-5.
  24. Switzer, G.L., and Nelson, L.E. 1963. Effects ofnursery fertility and density on seedling characteristics yield, and field performance odlobloly pine(Pinus teada L.), Soil Science Society of America, Proceedings. 27: 461-464. https://doi.org/10.2136/sssaj1963.03615995002700040028x
  25. Turner, N.C. 1980. Measurement of plant water status by the pressure chamber technique. Irrigation. Science. 9: 289-308.
  26. Xial, X., Xu, X. and Yang, F. 2008. Adaptive responses to progrressive drought stress in two Poplulus cathayana populations. Silva Fennica 42(5): 705-179.
  27. Xu, Z., Liu, J., Xu, J., Zhi, T. and Yin, X. 2012. The study on drought resistance of roof greening woody plants. Chinese Agricultural Science Bulletin 28(1): 311-316.
  28. Yin, H.J., Liu, Q. and Lai, T. 2008. Warming effects on growth and physiology in the seedlings of the two conifers Picea asperata and Abies faxoniana under two contrasting light conditions. Ecological Research 23: 459-469. https://doi.org/10.1007/s11284-007-0404-x
  29. Zhao, H.S.H. 2013. Drought resistance assessment of ground cover plants for low management and light weight green root system. Journal of the Korea Society of Environmental Restoration Technology. 16(1): 83-97. https://doi.org/10.13087/KOSERT.2013.16.1.083