• Title/Summary/Keyword: Quartzite

Search Result 109, Processing Time 0.032 seconds

Geological Mapping using SWIR and VNIR Bands of ASTER Image Data

  • Shanmugam, Sanjeevi;Singaravelu, Jayaseelan
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1230-1232
    • /
    • 2003
  • This study aims to extract maximum geological information using the ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer) images of a part of south India. The area chosen for this study is characterized by rock types such as Migmatite, Magnetite Quartzite, Charnockite, Granite, dykes, Granitoid gneiss and Ultramafic rocks, and minerals such as Bauxite, Magnesite, Iron ores, Calcite etc. Advantage was taken of the characteristic reflectance and absorption phenomenon in the VNIR, SWIR and TIR bands for these rocks and minerals, and they were mapped in detail. Image processing methods such as contrast stretching, PC analysis, band ratios and fusion were used in this study. The results of the processing matched with the field details and showed additional details, thus demonstrating the usefulness of ASTER (especially the SWIR bands) data for better geological mapping.

  • PDF

Thermal Conductivity Measurement of Sand-Water Mixtures Used for Backfilling Materials of Vertical Boreholes or Horizontal Trenches (지중열교환기 수직 보어홀 및 수평 트렌치 뒤채움재로서 모래-물 혼합물의 열전도도 측정)

  • Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.5
    • /
    • pp.342-350
    • /
    • 2008
  • This paper presents the results of a laboratory study on the thermal conductivity of sand (silica, quartzite, limestone and masonry sand)-water mixtures used in ground heat exchanger backfilling materials. Nearly 150 tests were performed in a thermal conductivity measuring system (TPSYS02) to characterize the relationships between the thermal conductivity of mixtures and the water content. The results show that the thermal conductivity of mixtures increases with increasing dry density and with increasing water content. The results also show that for constant water contents and a dry density value, the thermal conductivity of mixtures increases with increasing thermal conductivity of solid particles. The measurement results were also compared with the most widely used empirical prediction models for the thermal conductivity of soils.

Geology and Soils of Chojeong-Miwon Area (초정-미원지역의 지질과 토양에 관한 연구)

  • 나기창
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.13-28
    • /
    • 2000
  • Chojeong area is mainly composed of the Ogcheon Group which consists of regionally metamorphosed, age-unknown sedimentary rocks. In the northwestern parts, the Group is intruded by the Jurassic Daebo granite and Cretaceous felsic and mafic dykes. The lowermost, Midongsan Formation which consists of milky white impure quartzite, crops out along the anticline axes with N40E trend. Ungyori quartzite Formation is intercalated with quartzite and slate. Miwon Formation is most widely exposed in the area and consists mainly of phyllitic sandy rocks with a thin crystalline limestone bed. Hwajeonri Formation is divided into two parts, pelitic lower and calcareous upper parts, composed with phyllite and slate. Changri and Hwanggangri Formations are typical members of Ogcheon Group, the former bearing coally graphite seams consists mainly of black slate and phyllite with intercalated greenish grey phyllite, the latter is pebble bearing phyllite formation of which matrix and pebbles are variable in compositions and size. Biotite granite, porphyritic granite and two mica granite belong to Jurassic so-called Dabo granite. They intruded the Ogcheon Group forming vast contact metarnophic zone. Quartz porphyry, mafic dyke and felsite intruded along the marginal zone of porphyritic granite batholith and fracture of NS trend. Main structural lineaments in Ogcheon Group shows N25-45E, NS and N30-45W trends. The N25-45E trends are mainly from general ductile deformation during regional metamorphism, showing isoclinal folding, Fl foliations and lithological erosional characters. Some of these trends are due to normal faults. The NS and N30-45W trends represent brittle deformation including faults and joints. In the area of granitic batholith, NS to N30- 45 trends are from the direction of dykes. In the soils of the area, average contents of heavy metal elements such as Cd, Cr, Cu, Pb, and Zn are 0.2, 50.6, 35.5, 27.9, and 93.4 ppm respectively, which are not higher than the average values of natural soils, under the tolerable level. Enrichment Index does not show any heavy metal pollution in the area. Average depths of weathering(5m vs. 2m), porosities(43.94 vs. 51.80), densities(l.29 vs. 1.15), and permeabilities(2.52 vs. 8.07) are comparable in granite areas and in the phyllite areas of Ogcheon Group.

  • PDF

A case study on variation of the coefficients K and n with proceeding of blasting works at the felsite zone (규장암지역에서 발파공사중 K 및 n의 변화에 대한 연구)

  • 안명석;박종남
    • Explosives and Blasting
    • /
    • v.16 no.4
    • /
    • pp.29-39
    • /
    • 1998
  • A case study was made on in site vibration velocity data collected for two months in the construction area of the Daeduck cultural City Hall. Taegu The geology over the area shows distributions of weathered and some crack developed hornfels of mud-shale in the upper part, underlain by less weathered and hard compact quartzite. For the period of 2 months of blasting event, the vibration velocities were measured and these data were analysed for K and n for three different period the test period, first month and second month. The data for the test period show that K and n are 2464 and 1.621 with the cube root method, and 7154 and 1.791 with the sqare root one, respectively. The data for the first month collected mostly from blasting in the upper hornfels show that K and n are 1668 and 1,492 for the cube root and 1219 and 1,366 for the square root, respectively. Such a significant decrease in the K and n values from the test period through the first month for the weathered and comparatively well crack developed rocks hard and compact lower quartzite, may be due to difference in attenuation of waves propagating through physically different media. Therefore, for more effective safety design and blasting, it seems that it may be n to adopt appropriate K and n values, with getting lower step by step while proceeding the operation. In the meantime, the attenuation rate of K and n together with SD cross point for the cube and square root methods indicates that the cube root one appears to be more applicable than the square root for this area with limited distance(The maximum is 100m).

  • PDF

A Study on Fabrication and Characterization of Inorganic Insulation Material by Hydrothermal Synthesis Method (2) (수열합성법을 이용한 무기계 단열소재 제조방법 및 특성에 관한 연구 (2))

  • Seo, Sung-Kwan;Chu, Yong-Sik;Lee, Jong-Kyu;Song, Hun;Park, Jae-Wan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.225-232
    • /
    • 2013
  • The inorganic insulating material was fabricated with quartzite, ordinary portland cement(OPC), lime, anhydrous gypsum and foaming agent by hydrothermal reaction. The inorganic insulating material was fabricated by using autoclave chamber under high-temperature and high-pressure. The inorganic insulating material is a porous lightweight concrete. Because of its porous structure, properties of inorganic insulating material were light-weight and high-heat insulation property. Properties of fabricated inorganic insulating material were $0.26g/cm^3$ in specific gravity, 0.4MPa in compressive strength and 0.064W/mK in thermal conductivity. In this study, the inorganic insulating material was fabricated and analyzed at different size of quartzite/OPC, various foaming reagent and functional additives to improve the properties. Consequently, polydimethylsiloxane can improve density and thermal conductivity. Especially, polydimethylsiloxane showed excellent improvement in compressive strength.

충주부근 활석 광상의 성인

  • 김형식;조동수
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.95-103
    • /
    • 1993
  • The geology of the talc ore deposits in the Chungju area consists of the Kyemyeongsan Formation, the Munjuri Formation, the Daehyangsan Quartzite, the Hyangsanni Dolomite, and the basic rocks of the Ogcheon belt. The talc ore occurs in the Hyangsanni Dolomite near the Daehyangsan Quartzite The mineral assemblages in the Hyangsanni Dolomite are \circled1calcite-tremolite-talc-quartz, \circled2calcite-talc-quartz, \circled3tremolite-calcite-dolomite, and \circled4calcite-dolomite-phlogopite-chlorite. Talc has almost the ideal composition($X_{Mg}$=Mg/(Fe+Mg)=0.98). Talc was formed in siliceous dolomite by the medium-pressure type regional metamorphism. The evidences for contact metamorphism and/or hydrothermal reaction are not clear. The metamorphic grade of the Hyangsanni Dolomite and its adjacent pelitic or basic rocks near the deposits corresponds to epidote-amphibolite facies or greenschist facies based on the, mineral assemblages of \circled1hornblendebiotite-muscovite-epidote-quartz \circled2biotite-chlorite-quartz, and \circled3hornblende-actinolite-plagioclasequartz. The formation of the talc deposits were caused by the following reactions due to greenschist facies metamorphism of siliceous-dolomitic rocks in the Hyansanni Dolomite. (I) 3 dolomite+4 quartz+$H_2O$= talc+ 3 calcite +3 $CO_2$; (11) 3 tremolite+ 2 $H_2O$+ 6 $CO_2$= 5 talc+ 6 calcite + 4 quartz. The minimum temperature of the talc-tremolite-quartz assemblage is about $434^{\circ}C$ from calcite thermometry and the carbon dioxide mole fraction in metamorphic fulid($X_{$CO_2$}$) is about 0.1 at assumed pressure, 3 kbar.

  • PDF

Microscopic Study of Sangdong Tungsten Ore Deposit, Korea (상동중석광상(上東重石鑛床)의 현미경적(顯微鏡的) 연구(硏究))

  • Lee, Dai Sung;Kim, Suh-Woon
    • Economic and Environmental Geology
    • /
    • v.2 no.1
    • /
    • pp.1-12
    • /
    • 1969
  • In the Sangdong Mine area, Taebaegsan series (Pre-Cambrian) and Chosun System (Cambro-ordovician) are widely distributed. The Chosun System consists of Yangdug Series (Jangsan Quartzite and Myobong Slate) and The Great Limestone Series (Pungchon Limestone, Shesong Shale, Hwajeol Formation and Dongjeom Quartzite). The mineralized zone containing the main ore body of the Sangdong Mine was developed in the Myobong Slate formation. The result of the field and microscopic study on the mineral paragenesis and it's wall rock alteration in the tungsten ore deposit shows the following features. The orogenic movements of the Post-Chosun System in the Hambaeg Geosyncline are closely related to the tungsten ore deposition in the area, the ore minerals are composed mainly of scheelite, powelite molybdenite and sulfide minerals, and gangue minerals are hornblende, diopside, garnet, quartz, phlogopite, tremolite, biotite, muscovite, fluorite, etc., main ore body was enriched by scheelite bearing quartz vein filling into interstices of formerly mineralized zones, and the minor faults, faults of N $60^{\circ}-70^{\circ}W$, $45^{\circ}-60^{\circ}NE$ and joints, which were formed at the end of the mineralization and the slate. Country rock of the ore body was altered into the following several zones from the outside to the inside; lowgrade recrystalline aureole, silicified sericite zone, and diopside-hornblende zone. Under the microscopic observation of 195 samples taken from throughout ore body can be classified into 10 different groups by their mineral paragenesis as shown in table 2. The garnet-diopside group is primary skarn and it shows gradational change to the groups of later stage by the successive processes of metasomatism. From the stage of quartz-bearing group, the dissemination of scheelite is seen. The crystallization of scheelite in the bed started with the quartz deposition and continued to the last stage when quartz vein intruded into the main ore body. In the field and the under ground investigation a durable limestone bed in thickeness about 20 meters and their remnants in ore body are observed and under microscope calcite remnants are recognized. Hence it is posturated that the ore material moved up through the faults, shear zones or feather cracks and was assimilated with the interbeded limestone, after that the body was affected by the successive differentiated ore solution by gradational increasing in $SiO_2$, $K_2O$ and $H_2O$. Evidently this ore deposit shows the features resulted from pyrometasomatic processes.

  • PDF

Geological Comparison Between Musan Iron Deposit in North Korea and Iron Deposits in Anshan-Benxi Area in China (북한 무산 철광상과 중국 안산-번시 철광화대 지질학적 비교)

  • Kim, Namhoon;Koh, Sang-Mo;Lee, Bum Han
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.215-225
    • /
    • 2018
  • Musan iron deposit in North Korea and iron deposits in Anshan-Benxi area in China are Archean banded iron formations and included in Longgang block in Eastern block of North China Craton. Host formations of Musan iron deposit and Anshan-Benxi iron mineralized belt are Musan group and Anshan group, respectively. These groups consist of magnetite-bearing quartzite, amphibolite, schist, and migmatite. Host rock of banded iron formation in Musan deposit and Anshan-Benzi mineralized belt is magnetite-bearing quartzite. Shape of ore bodies in Musan deposit is horse's hoof due to the fold while shape of orebodies in Anshan-Benxi mineralized belt is layer. The previous studies revealed the both of banded iron formations are contemporaneously deposited during the late Archean (Musan deposit and iron deposits in Anshan-Benxi area: 2.66-2.52 Ga and 2.55-2.53 Ga, respectively). Musan deposit and iron deposits in Anshan-Benxi mineralized belt belolng to Algoma type BIFs. In conclusion, the characteristics of geology, formation ages, and deposit types of Musan deposit and Anshan-Benxi minerlized belt are very similar.

Thermal Diffusivity Evaluation of Backfilling Materials for Horizontal Ground Heat Exchanger Using Single-Probe Method (단일 탐침법을 이용한 수평형 지중열교환기 뒤채움재의 열확산계수 산정)

  • Sohn, Byong-Hu;Choi, Hang-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.356-364
    • /
    • 2011
  • Storage and transfer heat in soils is governed by the soil thermal properties and these properties are therefore needed in many engineering applications, including horizontal ground heat exchanger for ground-coupled heat pumps. This paper presents the evaluation results of the thermal diffusivity of soils (silica, quartzite, limestone, sandstone, granite, and two masonry soils used for the trench backfilling materials of the horizontal ground heat exchanger. To assess this thermal property, we (i) measure the soil thermal conductivities using single-probe method and (ii) use the de Vries method of summing the heat capacities of the soil constituents. The results show that the thermal diffusivity tends to increase as dry soil begins to wet, but it approaches a constant value or even decreases as the soil continues to wet. Combined algorithm with and improved model for the thermal conductivity of soils and the constituent equation provides accurate estimates of the soil thermal diffusivity.

Investigation on Rock Slope Failure in Odong 2 area, Boeun-Gun (보은군 회북면 오동리 2지구 암반 절개면의 붕괴원인 고찰)

  • Koo, Ho-Bon;Baek, Yong;Kim, Gyu-Han;Rhee, Jong-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.535-542
    • /
    • 2000
  • The investigated cut-slope is located in Odong-Ri, Hoebuk-Myun, Boeun-Gun and composed of quartzite and phyllitic rocks (approximately 80 meters in length and 25 meters in height). During the investigation, the groundwater which was inferred to the natural pipe of slope was continuously flowing in the upper part of slope. The investigation for discontinuity properties in this area was carried out to decide the rock mass rating and strength parameters. To analyze the stability of cut-slope, lower equal-area hemisphere projection method was used. And laboratory test was done to evaluate engineering properties of soil which was sampled in the non-failure and failure area The inferred causes of cut-slope failure are the geometric relationship between the orientation of cut-slope and geological structures such as joints, faults which is distributed in the slope. And direct cause of failure is the increase of water content due to the heavy rainfall.

  • PDF