• Title/Summary/Keyword: Quantum systems

Search Result 332, Processing Time 0.024 seconds

Synthesis of a Novel Near-Infrared Fluorescent Dye: Applications for Fluorescence Imaging in Living Cells and Animals

  • Chen, Tongbin;Lai, Yijun;Huang, Suisheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2937-2941
    • /
    • 2013
  • Fluorescence imaging is considered as one of the most powerful techniques for monitoring biomolecule activities in living systems. Near-infrared (NIR) light is advantageous for minimum photodamage, deep tissue penetration, and minimum background autofluorescence interference. Herein, we have developed a new NIR fluorescent dye, namely, RB-1, based on the Rhodamine B scaffold. RB-1 exhibits excellent photophysical properties including large absorption extinction coefficients, high fluorescence quantum yields, and high photostability. In particular, RB-1 displays both absorption and emission in the NIR region of the "biological window" (650-900 nm) for imaging in biological samples. RB-1 shows absorption maximum at 614 nm (500-725 nm) and emission maximum at 712 nm (650-825 nm) in ethanol, which is superior to those of traditional rhodamine B in the selected spectral region. Furthermore, applications of RB-1 for fluorescence imaging in living cells and small animals were investigated using confocal fluorescence microscopy and in vivo imaging system with a high signal-to-noise ratio (SNR = 10.1).

A Possible Merge of FRET and SPR Sensing System for Highly Accurate and Selective Immunosensing

  • Lee, Jae-Beom;Chen, Hongxia;Lee, Jae-Wook;Sun, Fangfang;Kim, Cheol-Min;Chang, Chul-Hun L.;Koh, Kwang-Nak
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2905-2908
    • /
    • 2009
  • Immuno-sensing for high accurate and selective sensing was performed by fluorescence spectroscopy and surface plasmon resonance (SPR), respectively. Engineered assembly of two fluorescent quantum dots (QDs) with bovine serum albumin (BSA) and anti-BSA was fabricated in PBS buffer for fluorescence analysis of fluorescence resonance energy transfer (FRET). Furthermore, the same bio-moieties were immobilized on Au plates for SPR analysis. Naturally-driven binding affinity of immuno-moieties induced FRET and plasmon resonance angle shift in the nanoscale sensing system. Interestingly, the sensing ranges were uniquely different in two systems: e.g., SPR spectroscopy was suitable for highly accurate analysis to measure in the range of 10$^{-15{\sim}-10$ng/mL while the QD fluorescent sensing system was relatively lower sensing ranges in 10$^{-10{\sim}-6$ng/mL. However, the QD sensing system was larger than the SPR sensing system in terms of sensing capacity per one specimen. It is, therefore, suggested that a mutual assistance of FRET and SPR combined sensing system would be a potentially promising candidate for high accuracy and reliable in situ sensing system of immune-related diseases.

누설전류가 작은 $1.3\mum$ GaInAsP/InP 평면매립형 레이저 다이오드

  • Lee, Jung-Gi;Cho, Ho-Sung;Park, Kyung-Hyun;Park, Chan-Yong;Lee, Yong-Tak
    • ETRI Journal
    • /
    • v.13 no.4
    • /
    • pp.2-9
    • /
    • 1991
  • Buried-heterostructure lasers are more difficult to fabricate than weakly index guided or gain guided lasers. However, these strongly index guided structures are most suitable for a source of lightwave transmission systems. But, for conventional etched mesa buried heterostructure lasers, the regrowth of InP blocking layer is difficult and irreproducible. So, there are inevitable leakage currents flowing outside the active region resulting poor performance. To eliminate these problems, we used a planar buried heterostructure. As a results, the average threshold current was 28mA and the differential quantum efficiency was about 20% per facet for $1.3\mum$ GaInAsP/InP PBH-LD. The initial forward leakage current was not exceeding $1\muA$ and the reverse voltage for $-10\muA$ was -3V~-5V, these are improved figure of 1mA~10mA and -1V~-3V for EMBH laser diode. The chip modulation bandwidth was more than 2.4GHz for $1.5I_th$.

  • PDF

Simulation of Two-Dimensional Intervalley Scattering Rate in HEMT Device (HEMT 소자의 2차원 계곡간 산란율 시뮬레이션)

  • 이준하;이흥주
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.4
    • /
    • pp.336-339
    • /
    • 2004
  • In this paper the two-dimensional scattering rates were calculated in pseudomorphic Al/sub x//Ga/sub 1-x//As/Ga/sub y/In/sub l -y//As/GaAs heterostructure systems. The electronic states of the square quantum well were determined by the numerical self-consistent solution of Poisson's and Schrodinger's equations. The numerically obtained wave functions and energy levels were used to obtain the major two-dimensional scattering rates in this structure. Polar optical- and acoustic-phonon scattering, piezoelectric, ionized impurity and alloy scattering were considered for the first two sub-bands. The results were compared to the three-dimensional scattering rates also calculated in the same region.

  • PDF

Photodetection Mechanism in Mid/Far-Infrared Dual-Band InAs/GaSb Type-II Strained-Layer Superlattice

  • No, Sam-Gyu;Lee, Sang-Jun;Krishna, Sanjay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.127-127
    • /
    • 2010
  • Owing to many advantages on indirect intersubband absorption from the hole miniband to the electron miniband based on the type-II band alignment in InAs/GaSb strained-layer superlattice (SLS), InAs/GaSb SLS infrared photodetector (SLIP) has emerged as a promising system to realize high-detectivity quantum photodetector operating up to room temperature in the spectral range of mid-infrared (MIR) to far-infrared (FIR). In particular, n-barrier-n (n-B-n) structure designed for blocking the majority-carrier dark current makes it possible for MIR/FIR dual-band SLIP whose photoresponse (PR) band can be exclusively selected by the bias polarity. In this study, we present the MIR and FIR photoresponse (PR) mechanism identified by dual-band PR spectra and photoluminescence (PL) profiles taken from InAs/GaSb SLIP. In the MIR/FIR PR spectra measured by changing bias polarity, each spectrum individually shows a series of distinctive peaks related to the transitions from the hole subbands to the conduction one. The PR mechanism at each polarity is discussed in terms of diffusion current, and a superposition of MIR-PR in the FIR-PR spectrum is explained by tunnelling of electrons activated in MIR-SLS. The effective FIR-PR spectrum decomposed into three curves for HH1, LH1, and HH2 has revealed the edge energies of 120, 170, and 220 meV, respectively, and the temperature variation of the MIR-PR edge energies shows that the temperature behavior of the SLS systems can be approximately expressed by the Varshni empirical equation.

  • PDF

Lattice-based Threshold Ring Signature with Message Block Sharing

  • CHEN, Jiangshan;HU, Yupu;GAO, Wen;Liang, Hongmei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.1003-1019
    • /
    • 2019
  • Threshold ring signature scheme enables any t entities from N ring members to spontaneously generate a publicly verifiable t-out-of-N signature anonymously. The verifier is convinced that the signature is indeed generated by at least t users from the claimed group, but he cannot tell them apart. Threshold ring signatures are significant for ad-hoc groups such as mobile ad-hoc networks. Based on the lattice-based ring signature proposed by Melchor et al. at AFRICRYPT'13, this work presents a lattice-based threshold ring signature scheme, employing the technique of message block sharing proposed by Choi and Kim. Besides, in order to avoid the system parameter setup problems, we proposed a message processing technique called "pad-then-permute", to pre-process the message before blocking the message, thus making the threshold ring signature scheme more flexible. Our threshold ring signature scheme has several advantages: inherits the quantum immunity from the lattice structure; has considerably short signature and almost no signature size increase with the threshold value; provable to be correct, efficient, indistinguishable source hiding, and unforgeable.

Trends in Hardware Acceleration Techniques for Fully Homomorphic Encryption Operations (완전동형암호 연산 가속 하드웨어 기술 동향)

  • Park, S.C.;Kim, H.W.;Oh, Y.R.;Na, J.C.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.6
    • /
    • pp.1-12
    • /
    • 2021
  • As the demand for big data and big data-based artificial intelligence (AI) technology increases, the need for privacy preservations for sensitive information contained in big data and for high-speed encryption-based AI computation systems also increases. Fully homomorphic encryption (FHE) is a representative encryption technology that preserves the privacy of sensitive data. Therefore, FHE technology is being actively investigated primarily because, with FHE, decryption of the encrypted data is not required in the entire data flow. Data can be stored, transmitted, combined, and processed in an encrypted state. Moreover, FHE is based on an NP-hard problem (Lattice problem) that cannot be broken, even by a quantum computer, because of its high computational complexity and difficulty. FHE boasts a high-security level and therefore is receiving considerable attention as next-generation encryption technology. However, despite being able to process computations on encrypted data, the slow computation speed due to the high computational complexity of FHE technology is an obstacle to practical use. To address this problem, hardware technology that accelerates FHE operations is receiving extensive research attention. This article examines research trends associated with developments in hardware technology focused on accelerating the operations of representative FHE schemes. In addition, the detailed structures of hardware that accelerate the FHE operation are described.

Legal Issues in the Introduction of Compelled Decryption According to Device Unlock Limits

  • Chohee Bae;Sojung Oh;Sohyun Joo;Jiyeon Joo;KyungLyul Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.591-608
    • /
    • 2023
  • With the emergence of advanced encryption technologies such as Quantum Cryptography and Full Disk Encryption, an era of strengthening information security has begun. Users respond positively to the advancement of privacy-enhancing technology, on the other hand, investigative agencies have difficulty unveiling the actual truth as they fail to decrypt devices. In particular, unlike past ciphers, encryption methods using biometric information such as fingerprints, iris, and faces have become common and have faced technical limitations in collecting digital evidence. Accordingly, normative solutions have emerged as a major issue. The United States enacted the CLOUD Act with the legal mechanism of 'Contempt of court' and in 2016, the United Kingdom substantiated the Compelled Decryption through the Investigatory Powers Act (IPA). However, it is difficult to enforce Compelled Decryption on individuals in Korea because Korean is highly sensitive to personal information. Therefore, in this paper, we sought a method of introducing a Compelled Decryption that does not contradict the people's legal sentiment through a perception survey of 95 people on the Compelled Decryption. We tried to compare and review the Budapest Convention with major overseas laws such as the United States and the United Kingdom, and to suggest a direction of legislation acceptable to the people in ways to minimize infringement of privacy. We hope that this study will be an effective legal response plan for law enforcement agencies that can normatively overcome the technical limitations of decoding.

Entropy and its Relation with the Property of Molecule, Phase and Component (엔트로피와 분자 특성, 상 및 성분의 관계)

  • Jaeeon Chang
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.116-122
    • /
    • 2023
  • We study the relationship of entropy with the properties of molecules and also with the macroscopic specifications of the system, i.e., component and phase. Understanding different viewpoints of classical mechanics and quantum mechanics for the indistinguishability of molecules belonging to the same component, we discuss a few thermodynamic systems in which the properties of molecules are to be consistent with the component as a macroscopic term of classifying the molecules. With a clear definition of thermodynamic microstate, the drawback of the Boltzmann statistics caused by the distinguishability of molecules is avoided, and the Gibbs paradox of entropy consequently disappears. Corresponding to the characteristics of fluid and solid phases, we investigated the effects of the indistinguishability and the symmetry number of molecules and the number of microstates realized in time on the partition function and the entropy. In particular, we show that crystalline solid can be regarded as a system which does not satisfy the ergodic hypothesis.

Real Time simulation programming in Object Oriented Distributed Computing Systems (객체지향 분산 컴퓨팅 시스템에서 실시간 시뮬레이션 프로그래밍)

  • Bae, Yong-Geun;Chin, Dal-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.159-168
    • /
    • 2002
  • Real-time(RT) object-oriented(OO) distributed computing is a form of RT distributed computing realized with a distributed computer system structured in the form of an object network. Several approached proposed in recent years for extending the conventional object structuring scheme to suit RT applications, are briefly reviewed. Then the approach named the Real Time Simulation Programing(RTSP) structuring scheme was formulated with the goal of instigating a quantum productivity jump in the design of distributed time triggered simulation. The RTSP scheme is intended to facilitate the pursuit of a new paradigm in designing distributed time triggered simulation which is to realize real-time computing with a common and general design style that does not alienate the main-stream computing industry and yet to allow system engineers to confidently produce certifiable distributed time triggered simulation for safety-critical applications. The RTSP structuring scheme is a syntactically simple but semantically Powerful extension of the conventional object structuring approached and as such, its support tools can be based on various well-established OO programming languages such as C+ + and on ubiquitous commercial RT operating system kernels. The Scheme enables a great reduction of the designers efforts in guaranteeing timely service capabilities of application systems.