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Abstract 
 
Threshold ring signature scheme enables any t entities from N ring members to spontaneously 
generate a publicly verifiable t-out-of-N signature anonymously. The verifier is convinced that 
the signature is indeed generated by at least t users from the claimed group, but he cannot tell 
them apart. Threshold ring signatures are significant for ad-hoc groups such as mobile ad-hoc 
networks. Based on the lattice-based ring signature proposed by Melchor et al. at 
AFRICRYPT’13, this work presents a lattice-based threshold ring signature scheme, 
employing the technique of message block sharing proposed by Choi and Kim. Besides, in 
order to avoid the system parameter setup problems, we proposed a message processing 
technique called “pad-then-permute”, to pre-process the message before blocking the message, 
thus making the threshold ring signature scheme more flexible. Our threshold ring signature 
scheme has several advantages: inherits the quantum immunity from the lattice structure; has 
considerably short signature and almost no signature size increase with the threshold value; 
provable to be correct, efficient, indistinguishable source hiding, and unforgeable. 
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1. Introduction 

In 1997, Ajtai[1] showed a vital conclusion that, the worst-case hardness of the standard 
lattice problem GapSVP can be reduced to the average-case hardness of SIS problem. After 
that, lattice-based cryptography become an appealing alternative to number theory based 
cryptology, due to its quantum resistant assumptions. According to the reference [26], 
lattice-based cryptography is becoming practical. 

In the real world, ring signatures are widely used, such as block-chain, e-commerce, and so 
on. In particular, when people not only need to protect the identity of the signer, but also need 
to disperse the power of the signer, the threshold ring signature can meet their needs, such as, 
electronic voting. The concept of ring signature was introduced by Rivest et al.[2] based on 
RSA. In certain circumstances, the designer would prefer to decrease the power of the signer, 
such as major decisions in party and country, or military and national defense. This matter can 
be settled by requiring the signature generated by several members in a group instead of one 
party. Bresson et al.[3] first defined the threshold ring signature. A t-out-of-N threshold ring 
signature allows any at least t users to generate a signature in the name of N members, without 
leaking any information about the set of signers that generate the signature (the t signers can be 
combined freely from N members). For any case that fewer than t members involved during 
the signing process, it is impossible to generate a valid signature. Any conspiracy of less than t 
corrupted members cannot produce a valid signature. Several threshold ring signature schemes 
([4-12,24,25]) were put forward. The application of threshold technology is widely in many 
subject areas, including in the cutting-edge direction such as big data ([27],[28]).  

Feng et al.’s[11] threshold signature is highly interactive and the scheme is based on 
NTRUSign, which has been broken by Nguyen and Regev[13]. Cayrel et al.’s[10] work gives 
a ring threshold signature by modifying the threshold signature scheme based on the syndrome 
decoding problem with identification scheme, but their scheme is based on small integer 
solution (SIS) problem which is weaker than LWE problem. Bendlin et al.[12] propose a 
threshold signature scheme by using an algorithm to share a lattice trapdoor. Their scheme is 
based on LWE problem but conceptually hard to understand. Bettaieb and Schrek[14] propose 
an improved lattice-based threshold ring signature scheme based on Cayrel et al.’s work, they 
generalize the same identification scheme CLRS to obtain a more efficient one, and the main 
improvement is a significant reduction of the size of the signature, but the signature size still 
increases obviously with the threshold value.  

Based on the lattice-based ring signature proposed by Melchor et al[15] at AFRICRYPT’13, 
we present a lattice-based threshold ring signature scheme in this work, by employing the 
message block sharing technique (Choi and Kim[16]). Besides, in order to avoid the system 
parameter setup problem, a new technique which we call “Pad-then-Permute”, is adopted to 
pre-process the message before blocking it, thus making the threshold ring signature scheme 
more flexible in practice. Our proposal has considerably short signature, and there is little or 
no increase in signature size with the threshold value. Besides, we proved that the proposed 
scheme is correct, efficient, indistinguishable source hiding, and unforgeable. 

The rest of the paper is organized as follows. The preliminaries are provided in Section 2, 
and the key techniques are introduced in Section 3. We describe the syntax of threshold ring 
signature in Section 4 and our construction in Section 5. The security analysis is shown in 
Section 6, and the performance analysis is given in Section 7. This paper concludes in Section 
8. 
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2. Preliminaries 
2.1 Notations 

  denotes the set of real numbers, and   denotes the set of  integers. For positive integer d, 
[d] denotes the set {1, , }d . For a given set S, x S←  represents that x is a uniformly random 
sample chosen from S. For positive integer m and n such that m n≥ , n

mC  describes the 
combination number which equals to ( )!/ !( )!m n m n− . p  denotes the quotient ring / p  . 

In this work, we build our construction upon the ring [ ] / 1n
p x x= + , where 1nx +  is 

irreducible, n is a power of two, and p is a prime such that 3mod8p = . Elements in  are 
represented by polynomials of degree 1n −  with coefficients in { }( 1) / 2, , ( 1) / 2p p− − − . 
Generally, polynomials are denoted by Roman letters ( , , )a b  , and vector of polynomials by 
roman letters with hats as ˆˆ( , , )a b  . For a positive integer m and polynomials 1, , ma a ∈  , 
the vector of polynomials 1( , , )ma a  is denoted by â . For any polynomial a, its infinity norm 
l∞  is defined as ( )|| || max | |i

ia a∞ = , where ( )ia  are coefficients of a. Similarly, the infinity 
norm of vector of polynomials 1ˆ ( , , )ma a a=   is defined as ˆ|| || max || ||i ia a∞ ∞=  where [ ]i m∈ . 

Let n be the system security parameter, other parameters are implicitly determined by n. 
We use the notations O, ω to show the growth of functions. poly(n) denotes functions such that 
( ) ( )cf n O n=  for some c. We say that f(n) is negligible (denoted by negl(n)) if, ( ) cf n n−<  

holds for all positive c and a sufficiently large n. A probability is overwhelming if it is 
( )1 negl n− . 

 

2.2 Foundation of Lattice 
We recall the definitions of lattice and the shortest independent vector problem(SIVP). 

Definition 1. Let 1{ , , }mB = b b  be a set of m linearly independent vectors over n
 . The 

lattice generated by B is defined by 

 
1

( ) |
m

i i i
i

B x x
=

 
= ∈ 
 
∑ b  , for {1, , }i m∈  . (1) 

Generally, 1( ( ))Bλ   denotes the shortest vector of on lattice ( )B .  
Definition 2. Let ( )B  be a lattice with rank m, for {1, , }i m∈  , the i-th successive 

minima of ( )B  is defined by  

 ( )( )( ){ }( ) inf | dim 0,i r R span B r iλ = ∈ ∩ ≥  , (2) 

where ( ) { }0, | || ||nB r x x r= ∈ ≤  is the m-dimensional sphere with the origin as its center and 
radius r, inf represents the lower bound, and dim defines the dimension of the space spanned 
by the lattice points in ( )0,B r . 

Definition 3 (SIVPγ  problem). Given an n-dimensional lattice , the SIVPγ  problem 
find n linearly independent lattice vectors of length at most ( )nγ λ⋅  . 
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2.3 Collision-Resistant Hash Functions 

The collision-resistant hash function family  in definition 4 was introduced by 
Lyubashevsky and Micciancio[17]. 

Definition 4. For integer m  and D× ⊆  , ˆ ˆ( , , ) { : }m
aD m h a× = ∈    is the function 

family that for any ˆ mz D×∈ , the equation ˆ ˆˆ ˆ( )a i ih z a z a z= ⋅ = ∑  holds where 1ˆ ( , , )ma a a=   
and 1ˆ ( , , )mz z z=  . Here, the inner products of i ia z  are operated in  . 

Note that, for any ŷ , ˆ mz∈  and c∈ , hash functions in ( , , )D m×   meet two 
conditions: 
 ˆ ˆˆ ˆ( ) ( ) ( )h y z h y h z+ = +  (3) 
 ˆ ˆ( ) ( )h yc h y c=  (4) 
Besides, the function family is collision resistant when its domain is the set m mD× ⊂  . Given 
an element ( , , )h D m×∈  , the collision problem ( , )Col h D×  (where D× ⊂  ) asks to find 
two distinct elements 1 2ˆ ˆ,z z D×∈  that 1 2ˆ ˆ( ) ( )h z h z= ). Lyubashevsky and Micciancio showed 
that, when D×  was limited to a set of small norm polynomials, ( , )Col h D×  was as hard as SVPγ  
in the worst case over lattices that correspond to ideals in . 

2.4 Statistical Distance 
The statistical distance shows the difference between two probability distributions. 

Definition 5 (Statistical Distance). Let X and X’ be two random variables over a finite 
set S. The statistical distance between X and X’ is defined by 

 1( , ') | Pr[ ] Pr[ ' ] |
2 x S

X X X x X x
∈

∆ = = − =∑ . (5) 

The following proposition suggests that the statistical distance will not increase by a 
randomized algorithm. 

Proposition 1 (Micciancio and Goldwasser[18]) Let X and X’ be two random variables 
come from a common set S. For any function f with domain S, the statistical distance between 
f(X) and f(X’) is at most  
 ( ( ), ( ')) ( , ')f X f X X X∆ ≤ ∆ . (6) 
That is to say, if the statistical distance between two random variables ( )X λ  and ( ')X λ  is 
negligible, an attacker can only achieve a negligible advantage in distinguishing the 
distributions of ( )X λ  and ( ')X λ  with a sample. In proposition 1, there is no assumption on the 
computational complexity f , so it holds no matter the attacker is computationally bounded or 
unbounded. 

However, the statistical distance may grow when considering multiple variables. We can 
get the conclusion from definition 4 that, if X, Y come from a distribution φ  and X’, Y’ come 
from a distribution 'φ , the following inequality holds: 
 2 ( , ') (( , ), ( ', ')) ( , ')X X X Y X Y X X∆ ≥ ∆ ≥ ∆ . (7) 
An attacker with many samples of the same distribution may be able to distinguish better than 
with one. Therefore, if the statistical distance of two random variables has a upper-bound of 

( )kε , given s samples of the same distribution and, the attacker’s advantage over a wild guess 
is bounded by ( )s kε⋅ . 
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3. Key Techniques 
3.1 Message Block Sharing 
The concept of message block sharing was introduced by Choi and Kim[16]. The main idea 
can be described as: first divide the original message into d message blocks 1, , dM M  with 
random sizes, and then distribute the message blocks to each member in a uniform number t. 

To achieve a t-out-of-N threshold signature scheme, the distribution of the message 
blocks cannot be shared randomly. The desired goal is that the alliance of less than t members 
in a group will not have all message blocks and any alliance of t members will get the whole 
message like threshold signature scheme. 

Let iu  and iΓ  be the member of the group and the set of message blocks iu  received 
during the distribution procedure, respectively. Next, we first describe two-out-of-three 
message block sharing as a toy example, and then deduce t-out-of-N message block sharing 
technique from it. 

Two-out-of-three Message Block Sharing. The original message can be divided into 
three message blocks 1 2 3, ,M M M  and each member gets two message blocks, so that any two 
members can recover the whole message. If 1 1 2{ , }M MΓ = , 2 2 3{ , }M MΓ = , and 3 1 3{ , }M MΓ = , 
one member does not have the whole message blocks and any two members can recover the 
original message. Fig. 1 shows the process of two-out-of-three message block sharing. 

 

M1 M2 M3

M1 M1

M1

M2 M2

M2

M3 M3

M3

Message

User 1 User 2 User 3

Recovery message

two out of three

 
Fig. 1. Two-out-of-three message block sharing 

 
t-out-of-N Message Block Sharing. In the above instance, none of the message blocks is 

shared by all members, and none of the members has all message blocks. Moreover, for each 
message block jM , one member does not have that block jM . Now, we extend these facts to 
the t-out-of-N message block sharing case. 

For each message block jM , it is sufficient that 1t −  members do not have that block. 
Besides, for each block jM , to avoid the coalition of 1t −  members recovering the full 
message, 1t −  members should not contain that block. Another requirement for the message 
block sharing is, each member should have the same number of message blocks. This matter 
can be solved by finding all possible 1t − -element subsets of N-element set, and for the rest of 
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the set 1 1{ , , }N tα α − + , each message block is distributed to members 
1 1
, ,

N t
u uα α − +


. 

In fact, when the number of message blocks d is set to be 1t
NC − , we can get the desired 

message block sharing model. On the one hand, the alliance of at most 1t −  members will not 
get the whole message as there will always exist exactly one message block missed during the 
distribution of message blocks. On the other hand, t members will always get the whole 
message since at least one member has each message block jM . Moreover, each member has 

exactly 1
1

t
Nk C −
−=  message blocks. Therefore, to construct t-out-of-N message block sharing, 

the message is required to be large enough to be divided into d message blocks. 
 

3.2 Message Preprocessing Technique: Pad-then-Permute 
Choi and Kim employed a parameter extracting algorithm called Threshold parameter 
extracting algorithm which took the message and its bit length as inputs, and outputted 
( , , )N tλ , where λ  was the security parameter, N was the group size, and t was the threshold 
value of the number of members to generate the valid signature. This approach leads to a 
serious disadvantage when the signature scheme is implemented. The threshold parameter 
extracting algorithm requires a message at least d bits, so the threshold signature cannot work 
if the message was short. Besides, the bit length of the message to be signed determines the 
value of the threshold t and N. It is infeasible in practice because the threshold value is always 
set with the system parameter before generating a threshold signature for a message. To avoid 
these disadvantages, we employ a message preprocessing technique called Pad-then-Permute 
to make the threshold signature more practical. 
 

Message

Message

New message

0 bits

(Pad to the specified width with 0 bits)

(Permuted by a uniform permutation)

 
Fig. 2. Pad-then-permute technique 

 
A brief introduction of this technique is shown in Fig. 2. In a t-out-of-N threshold 

signature scheme, the Pad-then-Permute algorithm first pads then permutes, and finally 
divides the message M into 1t

Nd C −=  message blocks 1{ , , }dM M . Specific for, this technique 
first computes /w g d=     and 0 ( )r H M= , where g is the bit length of M, H0 is a public hash 
function. Second, it pads M to w d⋅  bits with zero bits and the result is denoted as 'M . Then, 
the pad-then-permute algorithm randomly chooses a uniform permutation π  from the w d⋅  
bits permutation set. Finally, this technique divides the message ( ')Mπ  into d message blocks 

1{ , , }dM M . In a word, taking the system parameter and the message M as inputs, this 
technique outputs the relevant parameters as well as the message block sets that to be 
distributed to the members. 
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4. Syntax of Threshold Ring Signature 
Hereinafter, we follow the syntax and security requirements for threshold ring signature in the 
work of Bettaieb and Schrek[14]. Assume that t users try to co-produce a signature in the name 
of N users anonymously, and we use {1, , }U N=   and S to denote the set of users and the set 
of t signers with the conditions of S U⊂ , respectively. Each user i U∈  has a public/secret 
key pair ( , )i iPK SK . Generally, a threshold ring signature scheme includes three algorithms: 

Setup: this algorithm takes the system security parameter as inputs, and outputs the 
public parameters and the threshold parameters ( , , )n N t . 

T.RingKeyGen : this algorithm generates the key pair ( , )i iPK SK  for each user i U∈ . 
( , , )M U ST.RingSign : this algorithm is an interactive protocol between t users that takes 

a set of public keys of users in U, a set of t secret keys of users in S, and a message M as inputs, 
and outputs a t-out-of-N threshold ring signature σ  on M. 

( , , , )M t UσT.RingVerify : this algorithm is a deterministic algorithm which outputs 
accept or reject. 

Security requirements for a threshold signature scheme include indistinguishability 
source hiding and unforgeability. 

Indistinguishability source hiding. A t-out-of-N threshold ring signature is 
indistinguishable source hiding if, for a probabilistic polynomial time adversary , the success 
probability of  is negligible in the following game: 

a. For i U∈ , the challenger generates ( , )i iPK SK , and sends the public keys 

1{ , , }NPK PK PK=   to . Besides, a signing oracle ( )⋅OT.Sign  is allowed to be 
accessed by , which returns ( , , )M PK Sσ = T.Sign , where S denotes the set of 
signers. 

b.  outputs a message M, two distinct sets 
1,0 ,0

{ , , }
ti iPK PK  and 

1,1 1
{ , , }

t,i iPK PK  with 

,l jiPK PK∈  for {0,1}l∈ , {1, , }j t∈  .  can access to 

1,0 ,01{ , , } \ { , , }
tN i iSK SK SK SK  . Finally, the challenger chooses a random bit b and 

returns 
1, ,

( , ,{ , , })
b t bi iP SK SKσ µ← T.Sign  to . 

c.  outputs a bit 'b , and succeeds if 'b b= . 
Unforgeability. A threshold ring signature scheme is unforgeable under a chosen 

message attack if, for any probabilistic polynomial time forger , the success probability of  
is negligible in the following game: 

a. The challenger  generates key pairs 1{ , }N
i i iPK SK = , and sends the set of public keys 

1{ }N
i iPK PK ==  to . 

b.  can access to ( )⋅OT.Sign . 
c.  can make corruption queries that return secret keys iSK  on input i. 
d.  outputs a t-out-of-N threshold ring signature σ ∗  for a new message M*. 
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 succeeds if all of the following conditions are satisfied: 
a. ( , , , ) 1M t PKσ∗ ∗ =T.Verify . 
b.  never asked M ∗  in a signing query. 
c.The number of corruption queries is strictly less than 1t − . 

5. Our Construction 
5.1 Verbal Description 
We show how to construct a threshold ring signature scheme by the message block sharing 
technique. Our key generation algorithm comes from Lyubashevsky’s work[19]. The signer 
has a secret signing key ŝ  and a public verification key ( , )h C  such that ˆ( )h s C= . 

Before generating a signature, the system first generates public parameters for the 
threshold ring signature scheme, and then preprocesses the message M. Assume that the 
message M is divided into d blocks 1{ , , }dM M M=   for 1t

Nd C −= , and 
1

{ , , }
ki i iM MΓ = 

 is 

distributed to N users where 1
1

t
Nk C −
−= . In order to coproduce a signature on message M, t users 

(include a leader L among them) form a ring. Here, we denote the set of their identity indexes 
by S. They proceed as follows:  

a. Each signer j S∈  chooses a random vector of polynomials ˆ jy  in secret, computes 

and sends ˆ( )i ih y  to L. 
b. Upon receiving t values of ˆ( )j jh y  for j S∈ , leader L chooses random vectors of 

polynomials ˆiy  for each \i U S∈ . Finally, L computes and publishes 
ˆ( )i ii U

h y
∈

Ψ =∑  to t signers. 
c. For t signers, each of them combines his message blocks to get 

1
[ ] || ||

kj jM j M M= 
, 

and then computes ( ), [ ],je H M j r= Ψ . Finally, they output and send ˆ( , )j jz e  to L, 
where ˆ ˆˆ j j j jz s e y= + .  

d. L sets ˆˆ j jz y=  for the rest N-t users, and outputs 1̂ ˆ{( , , ), ( ) }N j j Sz z eσ ∈= 
 as the 

signature on M. 
For each jΓ , the verifier recombines 

1
[ ] || ||

kj jM j M M= 
, and checks if 

( )ˆ( ) , [ ],j i i ji U
e H h z C e M j r

∈
= − ⋅∑ ∑ . This is true for a correct signature because the linearity 

of hash function jh  has the property of ˆ ˆ ˆˆ( ) ( ) ( )j j j j j j j j j jh z Ce h s e y Ce h y− = + − = . 
As the growth of ring size will make forgery attacks easier, there is a constant c that 

acceptable the ring size are bounded by cλ , where λ  is security parameter. Since the sizes of 
the signature and the verification key grow with the ring size, the implementer can replace c by 
1 or 2 which will satisfy any reasonable applications. To resist the attacks on malicious chosen 
parameters, our threshold ring signature algorithm takes an initial step in which the inputs are 
required to pass simple tests (it is similar to the ring signature scheme proposed by Mechor et 
al.[15]). 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019                     1011 

5.2 Formal Description 

Algorithm 1  Setup. 
Description: Given the security parameters λ , N, and t, this algorithm determines the common public 
parameters. 
Input: λ , N, t,  
1. Compute 1t

Nd C −= . 
2. Set n as a power of two larger than λ . 
3. Set 3logm n= , and p as a prime larger than n4 such that p=3mod 8. 
--Note: these parameters define the sets , Dh, Dz, Dy, Ds,c, and the family . 

[ ] / 1n
p x x= + , 

1.5{ :|| || log log }hD g g mn n n n∞= ∈ ≤ + , 
1.5{ :|| || log }yD g g mn n∞= ∈ ≤ , 
1.5{ :|| || log log }zD g g mn n n n∞= ∈ ≤ − , 

, { :|| || 1}s cD g g ∞= ∈ ≤ . 
4. Set C ←  , 0C ≠ . 
5. { }0 ,: 0,1 s cH D∗ →  is a public collision-resistant hash function that will be employed to 

verify the integrity of the message. 
6. *

,' :{0,1} s cH D→ , *
,:{0,1} s cH D→  are two collision-resistant hash functions, which 

simulate as random oracles in the proof of security. 
Output: 1 0{ , , , , , , , , , '}P t N d n m p C H H Hλ= . 
 
Algorithm 2  T.RingKeyGen. 
Description: Generate a keypair for user i. 
Input: 1P . 
1. Set ,1 , ,ˆ ( , , ) m

i i i m s cs s s= ←  . 
2. If none of ,i js  is invertible, go to step 1. 

3. Let 0 {1, , }j m∈   such that 
0,i js  is invertible. 

4. 1
,1 , 1 , 1 ,( , , , , , ) m

i i j i j i ma a a a −
− + ←     

5. Let 
0 0 0

1
, , , ,( )i j i j i j i jj j

a s C a s−
≠

= −∑  and denote ,1 ,ˆ ( , , )i i i ma a a=  . 

Output: ˆ( , ) ( , )i i i iPK SK h s= , h is the hash function in  defined by ˆia . 

 
Algorithm 3  Message Processing. 
Description: Given a message M, this algorithm first pads, then permutes, and finally divides M into 
d  message blocks 1{ , , }dM M . 
Input: P1, M. 

1. Compute 
gw
d
 =   

 and 0 ( )r H M= , where g is the bit length of M, and H0 is a public hash 

function. 



1012                                                                Chen et al.: Lattice-based threshold ring signature with message block sharing 

2. Pad M to w d⋅  bits with zero bits, denote the resulting bit string as M’. 
3. Randomly choose a uniform permutation π  from the w d⋅  bits permutation set. 
4. Compute and divide ( ')Mπ  into d message blocks 1{ , , }dM M . 
Output: 2 { , }P rπ= , and distribute the corresponding message block set 

1
{ , , }

ki i iM MΓ = 
 to user i 

for 1
1

t
Nk C −
−= . 

Note: The users must keep their message blocks in secret. 
 
Algorithm 4  T.RingSign. 
Description: Given message block sets 

1
{ , , }

tj j jM MΓ = 
, t signers whose identity indexes j S∈  

coproduce a signature on M under the name of U  such that S U⊂ . 
Input: 1 2,P P , SKi, M 
1. Verify that the public parameters indeed meet the constraints of steps 1-3 in algorithm 

T.RingKeyGen, and SKi is in m
z , if not, output failed. 

2. Each signer j S∈  randomly chooses ˆ m
j yy ←  , then computes and sends ˆ( )j jh y  to L (one 

of the singers). 
3. Upon receiving the values ˆ( )j jh y  from signers j S∈ , L first chooses random vectors of 

polynomials ˆ m
i yy ←   for each \i U S∈ , and then computes ˆ( )i ii U

h y
∈

Ψ =∑  and 
( )1 1ˆ ˆ' ' ( ), , ( ),N Ny H h y h y= Ψ . Afterwards, L shares 1 1ˆ ˆ( ), , ( )N Nh y h y , Ψ , and 'y  with the 

rest 1t −  signers. 
4. Upon receiving Ψ , each signer j ensures his ˆ( )j jh y  is in 1 1ˆ ˆ( ), , ( )N Nh y h y , and checks the 

correctness of the value of Ψ  and 'y . Then, he sets 
1

[ ] || ||
kj jM j M M= 

, and computes 

( , [ ], ', )je H M j y r= Ψ  (ej is therefore in s,c), ˆ ˆˆ j j j jz s e y= + . 

5. If ˆ m
j zz D∉ , go to Step 2. 

6. Finally, the signer j S∈  sends ˆ jz  and ( , )j je Γ  to L. 
7. L recombines the original message ( ')Mπ  by jΓ  and recovers M, then he checks if 

0 ( )r H M= , if not, output failed. 

8. L sets { }j j S
e e

∈
=  and ˆˆi iz y=  for \i U S∈ , and combines 1̂ ˆ( , , )Nz z z=   in order. 

Output: { , , '}z e yσ =  . 
 
Algorithm 5  T.RingVerify. 
Description: Given public parameters, public key set, message block sets { }j j S∈Γ , and a signature on 
a message M, output 1 to accept or 0 to reject the signature. 
Input: 1 2,P P ,{ }j j S∈Γ , { , , '}z e yσ =  . 

The verifier first parses the signature { , , '}z e yσ =   into 1̂ ˆ( , , )Nz z z=  , { }j j S
e e

∈
= and 'y , and 

then checks as follows: 
1. Recombine the original message ( ')Mπ  by jΓ  and recover M, check if 0 ( )r H M= . 

2. ˆ m
i zz ∈  for all i that iPK U∈ . 
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3. For each j S∈ , the verifier sets 
1

[ ] || ||
kj jM j M M= 

, and checks if 

ˆ( ( ) , [ ], ', )j i i ji U j S
e H h z C e M j y r

∈ ∈
= − ⋅∑ ∑ . 

Output: If all the conditions are satisfied, the verifier output 1, otherwise 0. 
 
5.3 Correctness and Efficiency 

Assume that { , , '}z e yσ =   is a signature for M, the message block sharing technique 
ensures that the message must come from at least t signers from the ring, otherwise the 
message cannot be integrally composed, so a legally generated signature must satisfy the first 
condition. The second test is always passed as step 2 and step 5 guarantee the signature only 
contain elements in m

zD . In terms of the third test, 

\

\

\

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆˆ

\ , .
ˆ( ) ( (

i i j i i ji U j S i U j S

i i j j ji U S j S j S

i i j j j j ji U S j S j S

i i j j j

i i j ji U S

h z C e h z C e

h z h z C e

h y h s e y C e

by replacing z by y and s e y for
i U S and j S respectively

h y C e h

∈ ∈ ∈ ∈

∈ ∈ ∈

∈ ∈ ∈

∈

− ⋅ = − ⋅

= + − ⋅

= + + − ⋅

+

∈ ∈

= + ⋅ +

∑ ∑ ∑ ∑
∑ ∑ ∑
∑ ∑ ∑

∑

\

ˆ ))

ˆ, ( ) .
ˆ ˆ( ) ( )

ˆ( ).

j jj S j S

i i i

i i j ji U S j S

i ii U

y C e

using the homomorphic properties of
h and h s C

h y h y

h y

∈ ∈

∈ ∈

∈

− ⋅

∈ =

= +

=

∑ ∑

∑ ∑
∑



 

So the third test of T.RingVerify always holds for a valid signature. 
Therefore, a correctly created signature always passes the verification. The following 

proposition shows the computational costs of algorithms in the proposed scheme. Before it, we 
first give a lemma that will be used in the proof of Proposition 1. 

Lemma 1. Let ,s cD×  denote the set of non-invertible polynomials of Ds,c. We 

have
,

, /2

2Pr [ ]
3s c

s c nf D
f D×

×
←

∈ ≤ . 

Theorem 1. The expected running times of Setput, T.RingKeyGen, T.RingSign, and 
T.RingVerify are polynomial in the security parameter. 

Proof. The proof line comes from proposition 2 in the work of Mechor et al[15]. Firstly, 
we know that all the computations in these algorithms can be executed in polynomial time in 
the security parameter. Secondly, Setup and T.RingVerify can be operated in polynomial 
time, and we only need to consider the iterations of T.RingKeyGen and T.RingSign. 

Lemma 3 tells us that, each of the polynomials chosen in step 1 of algorithm 
T.RingKeyGen is invertible with probability exponentially close to one and thus the expected 
iteration is approximately one. So, the expected running time of T.RingKeyGen is 
polynomial. 

Step 1 in algorithm T.RingSign has a polynomial amount of iterations, and the loop 
between steps 2 and 5 which will continue as long as ˆ ˆˆ m

i i i i zz s e y D= ⋅ + ∉ . Corollary 6.2 in [19] 
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tells us that, for any ˆ m
ss D∈ , 

,

1
ˆ,

ˆ ˆPr [ ] (1)m
s c y

m
zc D y D

sc y D e o−
← ←

+ ∈ = − . In our scheme, e and ˆ jy  are 

drawn uniformly from Ds,c and m
yD , by using the above result, the expected iteration number 

of T.RingSign is less than 3, so T.RingSign also runs in expected polynomial time. 
Above all, our scheme is not very complex, so it requires low computational costs. The 

computation of algorithm 1 mainly includes some parameters sampling and hash functions 
choosing. There only needs one vector sampling and one inner product of vector in algorithm 2. 
In algorithm 3, the computation includes bits-pad and an uniform permutation. The 
computation of algorithm 4 mainly contains two hash operation, several vector sampling and 
operations. The computation of algorithm 5 also includes several hash and vector operations in 
it. 

6. Security Analysis 
Theorem 2. Under the assumption that Mechor et al.’s ring signature scheme is anonymous, 
the proposed threshold ring signature is statistically indistinguishable source hiding. 

Proof. In the indistinguishable source hiding game, the adversary can access a signature 
which depends on a random bit b as well as on the system public parameters P1, two distinct 
secret key sets 

1,0 ,00
ˆ { , , }

ti iSK SK SK=  , 
1,1 ,11

ˆ { , , }
ti iSK SK SK=  , and a message M. These 

parameters are known to the adversary except 
1,0 ,0

{ , , }
ti iSK SK  and the random bit b. Let 

ˆ, , ,bb P SK MX  be the random variable that represents the signature obtained by the adversary for a 
given set of parameters. Similar to the anonymity proof of Mechor et al.’s ring signature 
scheme, we can regard ˆ

bSK  as the 
bi

sk  in theorem 2 (Mechor et al.[15]). 
Next, we show the difference between our threshold ring signature from an existing ring 

signature (Mechor et al.[15]). In Mechor et al.’s ring signature scheme, ẑ  in our signature has 
one component generated by ˆ ˆˆi i i iz s e y← ⋅ +  with îs  the secret key, ˆiy  randomly chosen from 

m
yD , and ei computed by the hash function H. Other components are randomly chosen from 
m
zD . While in our signature, z  in our signature has t components generated by ˆ ˆˆi i i iz s e y← ⋅ +  

with îs  the secret key, ˆiy  randomly chosen from m
yD , and ei computed by the hash function H. 

Other N-t components are randomly chosen from m
zD . 

Theorem 6.5 in Lyubashevsky’s work[19] stated that, for any h  chosen from the hash 
family , message M, and any two private keys ˆ ˆ, ' m

ss s D∈  such that ˆ ˆ( ) ( ')h s h s= , 
( ) (1)ˆ ˆ( , ), ( ', ')z e z e n ω−∆ =  holds for random variables ẑ ( ˆ 'z ) and e ( 'e ), where e ( 'e ) is the 

output of  algorithm ˆ( , , )Sign M h s ( ˆ( , , ')Sign M h s ), respectively. Let , , , ,ibb P sk RX µ  be the random 
variable describing the output of ( , , , )

bi
P sk RµRing - sign  with 

1 0{ , , , , , , , , , '}P t N d n m p C H H Hλ= , 2 { , }P rπ= , 
bi

sk , µ , and R as inputs to the algorithm. 
From Mechor et al.’s (2013) work, if the domains of these variables are both different from 
{failed} we have 

0 1

(1)
0, , , , 1, , , ,( , )

i iP sk R P sk RX X n ω
µ µ

−∆ =  for {0,1}b∈ . Iterating this result for t-1 

times in our scheme, we can get the conclusion that 
0 1

(1)
ˆ ˆ0, , , 1, , ,( , )

i iP SK M P SK MX X n ω−∆ = . 
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Theorem 3. Suppose there exists a polynomial time forger  who makes at most 1t −  
corruption queries and can output a valid forgery of the proposed threshold ring signature 
scheme with probability of ε . By employing the power of , we can construct an algorithm  
that outputs a forgery of the underlying scheme with probability at least ( ) 21 /N t t Nε− + . 

Proof. Assume that there exists a forger  that can output a forgery of the proposed 
threshold ring signature scheme with non-negligible advantage ε . By employing , we 
construct a polynomial time algorithm  that outputs a forgery for Lyubashevsky’s scheme 
with non-negligible advantage. 

 receives as input a public key PK*.  employs  with input public keys 

{ }1, , NPK PK PK=  , which is generated as follows.  chooses an index * {1, , }i N←   and 
sets *

*
i

PK PK= . Other public keys are generated directly by algorithm T.RingKeyGen with 
their corresponding private key *i i

SK
≠

. Note that, parameter S in the underling scheme 

(Lyubashevsky[19]) is denoted by C to avoid confusion with the set of signer.  simulates 
oracle queries of  as follows: 

1. When  makes a signature queries on message M,  generates a response by running 
the T.RingSign algorithm with arbitrary t signers whose identity index *i i≠ .  

2. To reply consistently,  maintains a list 'L  in a form of 

( )1 1( ), , ( ), ( ); 'N N i ii U
h y h y h y y

∈∑
. When  makes queries with input as 

( )1 1( ), , ( )N Nh y h y  to random oracle 'H ,  first looks it up in 'L . If it exists, returns 

'y ; if not, generates ,' s cy D←  at random, and stores ( )1 1( ), , ( ), ( ); 'N N i ii U
h y h y h y y

∈∑
 

in 'L . 
3. Similarly,  need to maintain another list L  in a form of ( )( ), [ ], ', ;i i ji U

h y M j y r e
∈∑  to 

reply consistently When  makes queries with input as ( )( ), [ ], ',i ii U
h y M j y r

∈∑  to 

random oracle H ,  first searches ( )( ), [ ], ', ;i i ji U
h y M j y r e

∈∑  in L, if it exists, returns 

je ; if not, it searches 'y  in 'L . If it exists,  makes queries with input 

( )* *( ), [ ] ||i ih y M j r  to the random oracle of the underlying signature, adds the answer in 
L and honestly returns it to ; otherwise,  chooses ,j s ce D←  at random, and stores it in 
L . 

4.  faithfully answers any corruption query that is submitted by  for a user *i i≠ . If  
makes a corruption query for *i ,  simply aborts. Note that,  can totally make 1t −  
corruption queries. 

At a given point,  finishes running and outputs a valid forgery { , , '}z e yσ =   on message M , 

where 1̂ ˆ( , , )Nz z z=  , { }j j S
e e

∈
= . Note that,  never make signing queries on M . Next, we 

will show that, from this forgery on the proposed threshold signature,  can output a valid 
forgery of the underlying signature. Observe that  must make a random oracle query to get 
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'y , so ( )1 1( ), , ( ), ( ); 'N N i ii U
h y h y h y y

∈∑
 must be stored in 'L .  checks if ˆˆ( ) ( )

i i i i
h z h y∗ ∗ ∗ ∗= , if 

so,  outputs “failed”(this occurs in a probability of 1 t
N

− ); if not, it reveals that *i  is one of t 

signers in the forgery and one of { }j j S
e

∈
 is used in generating ˆ

i
z ∗ . So,  finds it out by 

checking that * * * *ˆˆ( ) ( ) ji i i i
h z h y C e= + ⋅  and denotes it as *i

e . Finally,  searches 

( )*
*( ), [ ], ', ;i i ii U

h y M i y r e
∈∑  and outputs ( )*ˆ ,

i i
z e∗  as a forgery on message ( )*[ ] ||M i r . Seeing 

that the abort probability of  is 1t
N
− , and the probability of failure is 1 t

N
− . Therefore, if  

can output a valid forgery of the proposed threshold ring signature scheme with probability of 
ε , by employing the power of , we can construct an algorithm  to output a forgery of the 

underlying scheme with probability of ( ) 211 1 /t t N t t N
N N

ε ε− − ⋅ ⋅ = − + 
 

. This completes 

the proof. 

7. Analysis 
In Table 1, we analyze the security of our scheme and other lattice-based threshold signature 
schemes. Feng et al.’s[11] scheme requires a sequential signing procedure, and thus each 
member cannot generate their own signature simultaneously. Moreover, their scheme is based 
on the standard NTRU lattice and the variation of CVP, thus can be broken. Cayrel et al.’s[10] 
proposal gives a ring threshold signature by modifying the threshold signature scheme based 
on the syndrome decoding problem with identification scheme, but this scheme is based on 
SIS problem which is weaker than LWE problem. Bendlin et al.’s[12] work is a threshold 
signature scheme based on LWE problem but conceptually hard to understand. The scheme 
proposed by Choi and Kim[16] is based on LWE problem and there is no known attack and the 
scheme is conceptually simpler. However, their scheme generates the group size after we get 
the message M, this would be inefficient in some situations. Our scheme is based on ideal 
lattice, there is no known attack so far. Like Choi and Kim’s work, we do not adopt any 
trapdoor functions as Bendlin et al. did, but divide the message into blocks. Besides, our 
scheme generates signature concurrently without any sequence. 
 

Table 1. Threshold Signatures on Lattices 
Scheme Hard Problem Security Known attack Key Idea 
(Feng et al., 2010) NTRU lattice CVP  Yes Sequential signing  
(Cayrel et al., 2010) Ideal lattice SIS No Syndrome decoding  
(Bendlin et al., 2013) Lattice LWE  No Trapdoor share 
(Choi and Kim, 2014) Lattice LWE No Message block 
This work Ideal lattice SVP No Message block 

Table 2 shows the signature sizes of our scheme in different values of t and N. Compared 
with previous works, our threshold scheme has considerably short signature sizes for a same N, 
and the signature size does not depend so much on the parameter t for the given parameters. 
Here, we use parameters used in subsection 5.1 (Cayrel et al.[10]) and subsection 6.3 (Bettaieb 
and Schrek[14]) to compare the performance with these schemes. The parameters are set n=64, 
m=2048, q=257 and the length of the commitment of COM is 224 bits for bit-security equals to 
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111. Note that, in our construction, the signature consists of two parts, each component in the 
first part is in m

zD  and each component of the second part is in ,s cD . (Parameter setups are in 
Algorithm 1, 1.5{ :|| || log log }zD g g mn n n n∞= ∈ ≤ − , , { :|| || 1}s cD g g ∞= ∈ ≤ ). 

 

Table 2. Comparison of Lattice-based Threshold Ring Signature Schemes in Mbytes 
N t (Cayrel et al., 2010)100 (Bettaieb and Schrek, 2013) This work 
100 2 24.43 0.52 0.0351 
100 10 24.43 2.56 0.0352 
100 50 48.85 12.80 0.0355 
200 2 48.85 0.54 0.0702 
200 10 48.85 2.68 0.0703 
200 50 48.85 13.39 0.0706 
1000 2 244.24 0.73 0.3509 
1000 10 244.24 3.63 0.3510 
1000 50 244.24 18.11 0.3513 

 
When we compare other signature schemes in threshold setting based on other problems 

such as Discrete Logarithm Problem (DLP) (Boldyreva[20]; Chen et al.[21]) and Integer 
Factorization Problem (IFP) (Shoup[22]), our scheme takes more operations than other 
schemes from the view of computations. Superior to schemes based on DLP and IFP, which 
can be broken by quantum computer attack (Shor[23]), our scheme can resist the quantum 
attacks so far. 

8. Conclusion 
Based upon the lattice-based ring signature proposed by Melchor et al[15], this work 
constructs a lattice-based threshold ring signature scheme by the technique of message block 
sharing. To solve the system parameter setup problem and make the threshold ring signature 
scheme more flexible in practice, we preprocess the message by a new technique called 
“pad-then-permute” before blocking the message. The proposed scheme has considerably 
short signature size, with hardly any increase with its threshold value. Moreover, our scheme 
inherits the quantum immunity from lattice structure, and is proved to be correct, efficient, 
indistinguishable source hiding, and unforgeable. We will research threshold ring signature 
with message block sharing based on other advaced cryptographic systems as the future work. 
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