• Title/Summary/Keyword: Quantum Dot Solar Cell

Search Result 56, Processing Time 0.028 seconds

Current-Voltage Characterization of Silicon Quantum Dot Solar Cells

  • Kim, Dong-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.143-145
    • /
    • 2009
  • The electrical and photovoltaic properties of single junction silicon quantum dot solar cells are investigated. A prototype solar cell with an effective area of 4.7 $mm^2$ showed an open circuit voltage of 394 mV and short circuit current density of 0.062 $mA/cm^2$. A diode model with series and shunt resistances has been applied to characterize the dark current-voltage data. The photocurrent of the quantum-dot solar cell was found to be strongly dependent on the applied voltage bias, which can be understood by consideration of the conduction mechanism of the activated carriers in the quantum dot imbedded material.

Luminescence Properties of Ag Doped ZnO as Quantum Dot Materials for Improving Efficiency of Dye-sensitized Solar Cell (염료감응형 태양전지에서 효율 향상을 위한 Quantum Dot 재료로서 Ag가 도핑된 ZnO의 발광 특성 연구)

  • 김현주;이동윤;송재성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.988-993
    • /
    • 2004
  • Luminescence characteristics of Ag-doped ZnO as the quantum dot materials to increasing the efficiency on dye-sensitized solar cells (DSC) have been studied. Ag doped ZnO powder was produced by the self-sustaining combustion process using ultrasonic spraying heating method. Luminescence wavelength region of the ZnO by Ag doping was shifted to longer wavelength. Tn the case of the Ag doped ZnO powder, broad luminescence spectrum centered on 600nm was observed. On the other hand, we compared PL data of RTA treated ZnO:Ag film at various temperatures because the front electrode of solar cell was in need of the sintering process. In XRD and PL data for RTA treated film at the 500$^{\circ}C$ showed good property. And, it was found that the grain size wasn't growing but only optical property was changed. According to the result of XRD, PL, absorption, emission spectrum and DV-X${\alpha}$ used in theoretical calculation, it is considered to be possible to use Ag doped ZnO as quantum dot material for improving DSC efficiency.

Key Factors for the Development of Silicon Quantum Dot Solar Cell

  • Kim, Gyeong-Jung;Park, Jae-Hui;Hong, Seung-Hwi;Choe, Seok-Ho;Hwang, Hye-Hyeon;Jang, Jong-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.207-207
    • /
    • 2012
  • Si quantum dot (QD) imbedded in a $SiO_2$ matrix is a promising material for the next generation optoelectronic devices, such as solar cells and light emission diodes (LEDs). However, low conductivity of the Si quantum dot layer is a great hindrance for the performance of the Si QD-based optoelectronic devices. The effective doping of the Si QDs by semiconducting elements is one of the most important factors for the improvement of conductivity. High dielectric constant of the matrix material $SiO_2$ is an additional source of the low conductivity. Active doping of B was observed in nanometer silicon layers confined in $SiO_2$ layers by secondary ion mass spectrometry (SIMS) depth profiling analysis and confirmed by Hall effect measurements. The uniformly distributed boron atoms in the B-doped silicon layers of $[SiO_2(8nm)/B-doped\;Si(10nm)]_5$ films turned out to be segregated into the $Si/SiO_2$ interfaces and the Si bulk, forming a distinct bimodal distribution by annealing at high temperature. B atoms in the Si layers were found to preferentially substitute inactive three-fold Si atoms in the grain boundaries and then substitute the four-fold Si atoms to achieve electrically active doping. As a result, active doping of B is initiated at high doping concentrations above $1.1{\times}10^{20}atoms/cm^3$ and high active doping of $3{\times}10^{20}atoms/cm^3$ could be achieved. The active doping in ultra-thin Si layers were implemented to silicon quantum dots (QDs) to realize a Si QD solar cell. A high energy conversion efficiency of 13.4% was realized from a p-type Si QD solar cell with B concentration of $4{\times}1^{20}atoms/cm^3$. We will present the diffusion behaviors of the various dopants in silicon nanostructures and the performance of the Si quantum dot solar cell with the optimized structures.

  • PDF

실리콘 박막 태양전지를 위한 CdSe계 양자점 광변환구조체

  • Sin, Myeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.135.2-135.2
    • /
    • 2014
  • Photon conversion technology for thin film solar cells is reviewed. The high-energy photons which are hardly absorbed in solar cells can be transformed the low energy photon by the photon conversion process such as down conversion or down shift, which can improve the solar cell efficiency over the material limit. CdSe-based quantum dot materials commonly used in LED can be used as the photon conversion layer for Si thin film solar cells. The photon conversion structure of CdSe-based quantum dot for Si thin film solar cells will be presented and the pros and cons for the Si thin film solar cells integrated with the photon conversion layers will be discussed.

  • PDF

Study of Light-induced Degradation in Thin Film Silicon Solar Cells: Hydrogenated Amorphous Silicon Solar Cell and Nano-quantum Dot Silicon Thin Film Solar Cell (박막 실리콘 태양전지의 광열화현상 연구: 비정질 실리콘 태양전지 및 나노양자점 실리콘 박막 태양전지)

  • Kim, Ka-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Light induced degradation is one of the major research challenges of hydrogenated amorphous silicon related thin film silicon solar cells. Amorphous silicon shows creation of metastable defect states, originating from elevated concentration of dangling bonds during light exposure. The metastable defect states work as recombination centers, and mostly affects quality of intrinsic layer in solar cells. In this paper we present results of light induced degradation in thin film silicon solar cells and discussion on physical origin, mechanism and practical solutions of light induced degradation in thin film silicon solar cells. In-situ light-soaking IV measurement techniques are presented. We also present thin film silicon material with silicon nano-quantum dots embedded within amorphous matrix, which shows superior stability during light-soaking. Our results suggest that solar cell using silicon nano-quantum dots in abosrber layer shows superior stability under light soaking, compared to the conventional amorphous silicon solar cell.

Efficiency enhancement of spray QD solar cells

  • Park, Dasom;Lee, Wonseok;Jang, Jinwoong;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.420.1-420.1
    • /
    • 2016
  • Colloidal quantum dot (CQD) is emerging as a promising active material for next-generation solar cell applications because of its inexpensive and solution-processable characteristics as well as unique properties such as a tunable band-gap due to the quantum-size effect and multiple exciton generation. However, the most widely used spin-coating method for the formation of the quantum dot (QD) active layers is generally hard to be adopted for high productivity and large-area process. Instead, the spray-coating technique may potentially be utilized for high-throughput production of the CQD solar cells (CQDSCs) because it can be adapted to continuous process and large-area deposition on various substrates although the cell efficiency is still lower than that of the devices fabricated with spin-coating method. In this work, we observed that the subsequent treatment of two different ligands, halide ion and butanedithiol, on the lead sulfide (PbS) QD layer significantly enhanced the cell efficiency of the spray CQDSCs. The maximum power conversion efficiency was 5.3%, comparable to that of the spin-coating CQDSCs.

  • PDF

Optical and Electrical Properties of InAs Sub-Monolayer Quantum Dot Solar Cell

  • Han, Im-Sik;Park, Dong-U;No, Sam-Gyu;Kim, Jong-Su;Kim, Jin-Su;Kim, Jun-O
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.196.2-196.2
    • /
    • 2013
  • 본 연구에서는 분자선 에피택시 (MBE)법으로 성장된 InAs submonolayer quantum dot (SML-QD)을 태양전지에 응용하여 광학 및 전기적 특성을 평가하였다. 본 연구에서 사용된 양자점 태양전지(quantum dot solar cell, QDSC)의 구조는 n+-GaAs 기판 위에 n+-GaAs buffer와 n-GaAs base layer를 차례로 성장 한 후, 활성영역에 InAs/InGaAs SML-QD와 n-GaAs spacer layer를 8주기 형성하였다. 그 위에 p+-GaAs emitter, p+-AlGaAs window layer를 성장하고 ohmic contact을 위하여 p+-GaAs 를 성장하였다. SML-QD 구조의 두께는 0.3 ML 이며, 이때 SML-QD의 적층수를 4 stacks 으로 고정하였다. SML-QD 와의 비교를 위하여 2.0 ML크기의 InAs자발 형성 양자점 태양전지(SK-QDSC)과 GaAs 단일 접합 태양전지 (reference-SC)를 동일한 성장조건에서 제작하였다. PL 측정 결과, 300 K에서 SML-QD의 발광 피크는 SK-QD 보다 고에너지에서 나타나는데(1.349 eV), 이것은 SML-QD가 SK-QD보다 작은 크기를 가지기 때문으로 사료된다. SML-QD는 single peak를 보이는 반면, SK-QD는 dual peaks (1.112 / 1.056 eV)을 확인하였다. SML-QD의 반치폭(full width at half maximum, FWHM)이 SK-QD에 비하여 작은 것으로 보아 SML-QD가 SK-QD보다 양자점 크기 분포의 균일도가 높은 것으로 해석된다. Illumination I-V 측정 결과, SML-QDSC의 개방 전압(VOC) 과 단락전류밀도(JSC)는 SK-QDSC의 값과 비교해 보면, 각각 47 mV와 0.88 mA/cm2만큼 증가하였다. 이는 SK-QD보다 상대적으로 작은 크기를 가진 SML-QD로 인해 VOC가 증가되었으며, SML-QD가 SK-QD 보다 태양광을 흡수할 수 있는 영역이 비교적 적지만, QD내에 존재하는 energy level에서 탈출 할 수 있는 확률이 더 높음으로써 JSC가 증가한 것으로 분석 된다.

  • PDF

Flexible quantum dot solar cells with PbS-MIx/PbS-BuDT bilayers

  • Choe, Geun-Pyo;Yang, Yeong-U;Yun, Ha-Jin;Im, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.347.2-347.2
    • /
    • 2016
  • Recently, in order to improve the performance of the colloidal quantum dot solar cells (CQDSCs), various efforts such as the modification of the cell architecture and surface treatment for quantum dot (QD) passivation have been made. Especially, the incorporation of halides into the QD matrix was reported to improve the performances significantly via passivating QD trap states that lower the life-time of the minority-carrier. In this work, we fabricated a lead sulfide (PbS) QD bilayer treated with different ligands and utilized it as a photoactive layer of the CQDSCs. The bottom and top PbS layer was treated using metal iodide ($MI_x$ and butanedithiol (BuDT), respectively. All the depositions and ligand treatments were carried out in air using layer-by-layer spin-coating process. The fabrication of the active layers as well as the n-type zinc oxide (ZnO) layer was successfully carried out on the bendable indium-tin-oxide (ITO)-coated polyethylene terephthalate (PET) substrate, which implies that this technique can be applied to the fabrication of flexible and/or wearable solar cells. The power conversion efficiency (PCE) of the CQDSCs with the architecture of $PET/ITO/ZnO/PbS-MI_x/PbS-BuDT/MoO_x/Ag$ reached 4.2 %, which is significantly larger than that of the cells with single QD (PbS-BuDT) layer.

  • PDF

Research Trends in Heavy-Metal-Free Quantum Dot Sensitized Solar Cells (무독성 양자점 감응형 태양전지 연구동향)

  • Kim, Jae-Yup;Ko, Min Jae
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.126-129
    • /
    • 2015
  • Over the last two decades, quantum dot (QD) solar cells have attracted much attention due to the unique properties of QDs, including band gap tunability, slow hot electron cooling, and multiple exiton generation effect. However, most of the QDs employed in photovoltaic devices contain toxic heavy-metals such as cadmium or lead, which may limit the commercial application. Therefore, recently, heavy-metal-free QDs such as Cu-In-S or Cu-In-Se have been developed for application in solar cells. Here, we review the research trends in heavy-metal-free QD solar cells, mainly focusing on Cu-In-Se QD-sensitized solar cells (QDSC).

Interfacial Engineering Strategies for Third-Generation Photovoltaics (차세대 태양전지의 계면 개질 전략)

  • Lim, Hunhee;Choi, Min-Jae;Jung, Yeon Sik
    • Current Photovoltaic Research
    • /
    • v.4 no.3
    • /
    • pp.98-107
    • /
    • 2016
  • Third-generation photovoltaics are of low cost based on solution processes and are targeting a high efficiency. To meet the commercial demand, however, significant improvements of both efficiency and stability are required. In this sense, interfacial engineering can be useful key to solve these issues because trap sites and interfacial energy barrier and/or chemical instability at organic/organic and organic/inorganic interfaces are critical factors of efficiency and stability degradation. Here, we thoroughly review the interfacial engineering strategies applicable to three representative third-generation photovoltaics - organic, perovskite, colloidal quantum dot solar cell devices.