• Title/Summary/Keyword: Quantitative risk assessment and management

Search Result 137, Processing Time 0.026 seconds

Consideration on the Regulated Quantity of Preparation for Accidents by Risk Assessment (위험도 평가를 통한 사고대비물질별 규정수량 고찰)

  • Ahn, Gwangjae;Kim, Jungwook;Lee, Keunwon;Jung, Seungho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.506-511
    • /
    • 2022
  • In the Chemicals Control Act, a system was implemented to unify off-site risk assessment and risk management plan into the prevention and management system for chemical accidents. Among the hazardous chemicals which have been covered in system, the accident preparation substances are designated as chemical substances that are likely to occur and of which damage scale are likely to be large in the event of chemical accidents. In this study, risks were compared by selecting accident preparation substances with similar regulated quantities. In addition, risk assessment studies were conducted applying the accident scenarios. Four types of materials such as ammonia, hydrogen chloride, carbon disulfide and benzene were selected for the study, and risks were finally analyzed using Safeti 8.0, a quantitative risk assessment program by DNV. As a result, some materials are identified to have high risks comparing to other substances having similar regulated quantities.

Tailoring Psychosocial Risk Assessment in the Oil and Gas Industry by Exploring Specific and Common Psychosocial Risks

  • Bergh, Linn Iren Vestly;Leka, Stavroula;Zwetsloot, Gerard I.J.M.
    • Safety and Health at Work
    • /
    • v.9 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • Background: Psychosocial risk management [Psychosocial Risk Management Approach (PRIMA)] has, through the years, been applied in several organizations in various industries and countries globally. PRIMA principles have also been translated into international frameworks, such as PRIMA-EF (European framework) and the World Health Organization Healthy Workplace Framework. Over the past 10 years, an oil and gas company has put efforts into adopting and implementing international frameworks and standards for psychosocial risk management. More specifically, the company uses a PRIMA. Methods: This study explores available quantitative and qualitative risk data collected through the PRIMA method over the past 8 years in order to explore specific and common psychosocial risks in the petroleum industry. Results: The analyses showed a significant correlation between job resources and symptoms of work-related stress, there was a significant correlation between job demands and symptoms of work-related stress, and there were differences in psychosocial risk factors and symptoms of work-related stress onshore and offshore. The study also offers recommendations on how the results can further be utilized in building a robust system for managing psychosocial risks in the industry. Conclusion: The results from the analyses have provided meaningful and important information about the company-specific psychosocial risk factors and their impact on health and well-being.

Risk Analysis of Off-site Risk Assessment using Vulnerability by Environmental Medium (환경매체별 취약성을 반영한 장외영향평가 위험도 분석)

  • Choi, Woo Soo;Back, Jong Bae
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.150-156
    • /
    • 2018
  • As the types and usage of chemical increase, modern countries should protect their health and environment from the risk of hazardous chemical. Chemical accidents not only affect humans but also cause huge losses to the environment. Moreover, since its effects do not end in a short period of time, it is necessary to identify the extent of the damage and establish a prevention and response system in advance. In 2015, the Chemical Substances Management Act provided a system for assessing the impact on the people and the environment around the workplace. However, it is difficult to quantitatively evaluate the impact on environmental factors such as vegetation and aquatic, with the current hazard assessment methods. The purpose of this study is to analyze the quantitative risk of environmental receptors. This study improved the existing risk assessment formula by using the environmental vulnerability index and established the end point concentration criterion which can estimate the damage range to environmental media. To verify the results of the study, a virtual accident scenario was selected and a case study was conducted. As a result, the extent of impact on the environmental medium can be calculated, and the degree of environmental risk of the zone can be quantified through the risk analysis considering the environmental vulnerability. This study is expected to increase the reliability of the reliability of the existing risk anaylsis method beacause it is a risk analysis method that can be applied when the environmental factors are absolutely necessary and when the residents and environment are complex.

Simulation-Based Operational Risk Assessment (시뮬레이션 기법을 이용한 운영리스크 평가)

  • Hwang, Myung-Soo;Lee, Young-Jai
    • Journal of Information Technology Services
    • /
    • v.4 no.1
    • /
    • pp.129-139
    • /
    • 2005
  • This paper proposes a framework of Operational Risk-based Business Continuity System(ORBCS), and develops protection system for operational risk through operational risk assessment and loss distribution approach based on risk management guideline announced in the basel II. In order to find out financial operational risk, business processes of domestic bank are assorted by seven event factors and eight business activities so that we can construct the system. After we find out KRI(Key Risk Indicator) index, tasks and risks, we calculated risk possibility and expected cost by analyzing quantitative data, questionnaire and qualitative approach for AHP model from the past events. Furthermore, we can assume unexpected cost loss by using loss distribution approach presented in the basel II. Each bank can also assume expected loss distributions of operational risk by seven event factors and eight business activities. In this research, we choose loss distribution approach so that we can calculate operational risk. In order to explain number of case happened, we choose poisson distribution, log-normal distribution for loss cost, and estimate model for Monte-Carlo simulation. Through this process which is measured by operational risk. of ABC bank, we find out that loss distribution approach explains closer unexpected cost directly compared than internal measurement approach, and makes less unexpected cost loss.

An Improved Multilevel Fuzzy Comprehensive Evaluation to Analyse on Engineering Project Risk

  • LI, Xin;LI, Mufeng;HAN, Xia
    • The Journal of Economics, Marketing and Management
    • /
    • v.10 no.5
    • /
    • pp.1-6
    • /
    • 2022
  • Purpose: To overcome the question that depends too much on expert's subjective judgment in traditional risk identification, this paper structure the multilevel generalized fuzzy comprehensive evaluation mathematics model of the risk identification of project, to research the risk identification of the project. Research design, data and methodology: This paper constructs the multilevel generalized fuzzy comprehensive evaluation mathematics model. Through iterative algorithm of AHP analysis, make sure the important degree of the sub project in risk analysis, then combine expert's subjective judgment with objective quantitative analysis, and distinguish the risk through identification models. Meanwhile, the concrete method of multilevel generalized fuzzy comprehensive evaluation is probed. Using the index weights to analyse project risks is discussed in detail. Results: The improved fuzzy comprehensive evaluation algorithm is proposed in the paper, at first the method of fuzzy sets core is used to optimize the fuzzy relation matrix. It improves the capability of the algorithm. Then, the method of entropy weight is used to establish weight vectors. This makes the computation process fair and open. And thereby, the uncertainty of the evaluation result brought by the subjectivity can be avoided effectively and the evaluation result becomes more objective and more reasonable. Conclusions: In this paper, we use an improved fuzzy comprehensive evaluation method to evaluate a railroad engineering project risk. It can give a more reliable result for a reference of decision making.

Study on the Selection and Application of a Spatial Analysis Model Appropriate for Selecting the Radon Priority Management Target Area (라돈 우선관리 대상 지역 선정에 적합한 공간분석모형의 선정 및 활용에 관한 연구)

  • Nam Goung, Sun Ju;Choi, Kil Yong;Hong, Hyung Jin;Yoon, Dan Ki;Kim, Yoon Shin;Park, Si Hyun;Kim, Yoon Kwan;Lee, Cheol Min
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.1
    • /
    • pp.82-96
    • /
    • 2019
  • Objective: The aims of this study were to provide the basic data for establishing a precautionary management policy and to develop a methodology for selecting a radon management priority target area suitable for the Korean domestic environment. Methods: A suitable mapping method for the domestic environment was derived by conducting a quantitative comparison of predicted values and measured values that were calculated through implementation of two models such as IDW and RBF methods. And a qualitative comparison including the clarity of information transmission of the written radon map was carried out. Results: The predicted and measured values were obtained through the implementation of the spatial analysis models. The IDW method showed the lowest in the calculated mean square error and had a higher correlation coefficient than the other methods. As results of comparing the uncertainty using the jackknife concept and the concept of error distance for comparison of the differences according to the model interpolation method, the sum of the error distances showed a modest increase compared with the RBF method. As a result of qualitatively comparing the information transfer clarity between the radon maps prepared with the predicted values through the model implementation, it was found that the maps plotted using the predicted values by the implementation of the IDW method had greater clarity in terms of highness and lowness of radon concentration per area compared with the maps plotted by other methods. Conclusions: The radon management priority area suggests selecting a metropolitan city including an area with a high radon concentration.

Risk Assessment in OECD High Production Volume Chemicals Program and its Countermeasure (OECD 대량생산화학물질 위해성평가 및 대책)

  • Kim, Myungjin;Bae, Heekyung;Choi, Yeonki;Kim, Mi Kyoung;Koo, Hyun-Ju;Song, Sang-Hwan;Choi, Kwang-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.5
    • /
    • pp.347-353
    • /
    • 2005
  • The risk assessment is the qualitative or quantitative evaluation of the risk posed to human health and the environment by the actual or potential presence or release of hazardous substances, pollutants or contaminants. The environmental impact assessment (EIA) is assessed by the environmental criteria, and risk assessment is assessed by the risk rate. Risk rate based on dose-response values may not be easy to apply on regulatory basis like EIA for uncertainty. Internationally there is an example of OECD program. Risk assessment of High Production Volume (HPV) Chemicals has started since the OECD Program with the 1990 Council Act on the Co-operative Investigation and Risk Reduction of Existing Chemicals. These HPV chemicals include all chemicals produced or imported at levels greater than 1,000 tonnes per year in at least one Member country or in the European Union region. The SIDS called the Screening Information Data Set is regarded as the minimum information needed to assess an HPV chemical to determine whether any further work should be carried out or not. All the data elements of SIDS including assessment for environment and health are prepared as three formats of the full SIDS Dossier, the SIDS Initial Assessment Report (SIAR), and the SIDS Initial Assessment Profile (SIAP) of an HPV chemical. In 1998 the global chemical industry through the International Council of Chemical Associations (ICCA) has joined to work with OECD. The OECD has assessed approximately 1,000 chemicals from 1991 through 2004 with ICCA. Till the February of 2005, 592 chemicals of those chemicals completed SIDS reports. Member countries have been targeted the goal of 1,000 new chemicals from 2005 to 2010 and Korea shared 36 chemicals from the 1,000 new chemicals. Currently Korea has completed SIDS reports of 7 chemicals among sponsored 24 chemicals. In conclusion SIDS project will be linked to national program for outputs application with more reliable production. Both the OECD and industry will carry out their commitment to complete assessments for more and the remaining chemicals assessment. The major outputs will contribute to cope with international chemical management.

Study on Development of Automated System for Hazard Screening at Analysis (위험 선별 및 분석 통합 자동화 시스템 개발에 대한 연구)

  • 한의진;김용하;최승준;김구회;윤인섭
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.20-27
    • /
    • 2003
  • Hazard Analysis is one of the basic tasks to ensure the safety of chemical plants. However, it is an arduous, tedious, time-consuming work and requires multidisciplinary knowledge and demands considerable cognitive load from the analysts. To overcome these problems, there have been attempts to automate this work by utilizing computer technology, particularly in the area of knowledge-based technique. There is two methods in the risk assessment of Chemical plant; quantitative and qualitative risk assessment. Both of them have been applied respectively, but if the integrated method of quantitative and qualitative risk assessments is used, all of the advantage of two methods can be applied. It is difficult to carry out integrated risk management of chemical plant. Therefore, automated integration system of risk management is necessary. We developed S/W Automated System for Hazard Screening & Analysis(ASCA) and applied to practical plant. By applying ASCA to case study, we can get the information about relative ranks of equipments, variable deviation, and consequence of potential accident. In this study, we applied ASCA to the H.T.U(Hydrotreating Unit) of the process to produce aromatic material. We could know relative ranks of equipments, variable deviation of malfunction in storage tank, D-101, and consequence of potential accident using ASCA. If integrated risk management in the chemical plant is applied, we can develop the emergency plan and prevent the accident.

Quantitative Microbial Risk Assessment Model for Staphylococcus aureus in Kimbab (김밥에서의 Staphylococcus aureus에 대한 정량적 미생물위해평가 모델 개발)

  • Bahk, Gyung-Jin;Oh, Deog-Hwan;Ha, Sang-Do;Park, Ki-Hwan;Joung, Myung-Sub;Chun, Suk-Jo;Park, Jong-Seok;Woo, Gun-Jo;Hong, Chong-Hae
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.484-491
    • /
    • 2005
  • Quantitative microbial risk assessment (QMRA) analyzes potential hazard of microorganisms on public health and offers structured approach to assess risks associated with microorganisms in foods. This paper addresses specific risk management questions associated with Staphylococcus aureus in kimbab and improvement and dissemination of QMRA methodology, QMRA model was developed by constructing four nodes from retail to table pathway. Predictive microbial growth model and survey data were combined with probabilistic modeling to simulate levels of S. aureus in kimbab at time of consumption, Due to lack of dose-response models, final level of S. aureus in kimbeb was used as proxy for potential hazard level, based on which possibility of contamination over this level and consumption level of S. aureus through kimbab were estimated as 30.7% and 3.67 log cfu/g, respectively. Regression sensitivity results showed time-temperature during storage at selling was the most significant factor. These results suggested temperature control under $10^{\circ}C$ was critical control point for kimbab production to prevent growth of S. aureus and showed QMRA was useful for evaluation of factors influencing potential risk and could be applied directly to risk management.

A Study on Quantitative Risk Analysis & Model Application for Hydrogen Filling Center (수소충전시설에 대한 정량적 위험성 평가 및 모델적용에 관한 연구)

  • Shin, Jung-Soo;Byun, Hun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.87-101
    • /
    • 2012
  • In gas industries, the potential risks of serious accidents have been increased due to high technology application and process complexities. Especially, in case of gas-related accidents, the extent of demage is out of control since gas plants handle and produce combustible, flammable, explosive and toxic materials in large amounts. The characteristics of this kind of disaster is that accident frequency is low, while the impact of damage is high, extending to the neighboring residents, environment and related industries as well as employees involved. The hydrogen gases treated important things and it used the basic material of chemical plants and industries. Since 2000, this gas stood in the spotlight the substitution energy for reduction of the global warming in particular however it need to compress high pressure(more than 150 bar.g) and store by using the special cylinders due to their low molecular weight. And this gas led to many times the fire and explosion due to leak of it. To reduce these kinds of risks and accidents, it is necessary to improve the new safety management system through a risk management after technically evaluating potential hazards in this process. This study is to carry out the quantitative risk assesment for hydrogen filling plant which are very dangerous(fire and explosive) and using a basic materials of general industries. As a results of this risk assessment, identified the elements important for safety(EIS) and suggested the practical management tools and verified the reliability of this risk assessment model through case study of accident.