Loading [MathJax]/jax/output/CommonHTML/jax.js
  • Title/Summary/Keyword: Quantitative interpretation

Search Result 230, Processing Time 0.032 seconds

On Mathematical Representation and Integration Theory for GIS Application of Remote Sensing and Geological Data

  • Moon, Woo-Il M.
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.37-48
    • /
    • 1994
  • In spatial information processing, particularly in non-renewable resource exploration, the spatial data sets, including remote sensing, geophysical and geochemical data, have to be geocoded onto a reference map and integrated for the final analysis and interpretation. Application of a computer based GIS(Geographical Information System of Geological Information System) at some point of the spatial data integration/fusion processing is now a logical and essential step. It should, however, be pointed out that the basic concepts of the GIS based spatial data fusion were developed with insufficient mathematical understanding of spatial characteristics or quantitative modeling framwork of the data. Furthermore many remote sensing and geological data sets, available for many exploration projects, are spatially incomplete in coverage and interduce spatially uneven information distribution. In addition, spectral information of many spatial data sets is often imprecise due to digital rescaling. Direct applications of GIS systems to spatial data fusion can therefore result in seriously erroneous final results. To resolve this problem, some of the important mathematical information representation techniques are briefly reviewed and discussed in this paper with condideration of spatial and spectral characteristics of the common remote sensing and exploration data. They include the basic probabilistic approach, the evidential belief function approach (Dempster-Shafer method) and the fuzzy logic approach. Even though the basic concepts of these three approaches are different, proper application of the techniques and careful interpretation of the final results are expected to yield acceptable conclusions in cach case. Actual tests with real data (Moon, 1990a; An etal., 1991, 1992, 1993) have shown that implementation and application of the methods discussed in this paper consistently provide more accurate final results than most direct applications of GIS techniques.

Development of ensemble machine learning model considering the characteristics of input variables and the interpretation of model performance using explainable artificial intelligence (수질자료의 특성을 고려한 앙상블 머신러닝 모형 구축 및 설명가능한 인공지능을 이용한 모형결과 해석에 대한 연구)

  • Park, Jungsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.4
    • /
    • pp.239-248
    • /
    • 2022
  • The prediction of algal bloom is an important field of study in algal bloom management, and chlorophyll-a concentration(Chl-a) is commonly used to represent the status of algal bloom. In, recent years advanced machine learning algorithms are increasingly used for the prediction of algal bloom. In this study, XGBoost(XGB), an ensemble machine learning algorithm, was used to develop a model to predict Chl-a in a reservoir. The daily observation of water quality data and climate data was used for the training and testing of the model. In the first step of the study, the input variables were clustered into two groups(low and high value groups) based on the observed value of water temperature(TEMP), total organic carbon concentration(TOC), total nitrogen concentration(TN) and total phosphorus concentration(TP). For each of the four water quality items, two XGB models were developed using only the data in each clustered group(Model 1). The results were compared to the prediction of an XGB model developed by using the entire data before clustering(Model 2). The model performance was evaluated using three indices including root mean squared error-observation standard deviation ratio(RSR). The model performance was improved using Model 1 for TEMP, TN, TP as the RSR of each model was 0.503, 0.477 and 0.493, respectively, while the RSR of Model 2 was 0.521. On the other hand, Model 2 shows better performance than Model 1 for TOC, where the RSR was 0.532. Explainable artificial intelligence(XAI) is an ongoing field of research in machine learning study. Shapley value analysis, a novel XAI algorithm, was also used for the quantitative interpretation of the XGB model performance developed in this study.

An Integrated Analysis of Recent Changes in Year-on-Year Consumer Price Index and Aggregate Import Price Index in Republic of Korea through Statistical Inference

  • Seok Ho CHANG;Soonhui LEE
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.1
    • /
    • pp.365-379
    • /
    • 2023
  • Purpose - Our previous study (Chang & Lee, 2023) presented observations on the recent changes in the year-on-year (YoY) Consumer Price Index (CPI) of the Republic of Korea (ROK) after the COVID-19 pandemic. The purpose of this article is to present an integrated analysis and interpretation of the recent changes in CPI and the Aggregate Import Price Index (IPI) by incorporating recent data, specifically data from September 2022 to December 2022. Design/methodology/approach - This study collected CPI (YoY) data in the ROK from January 2019 to December 2022 using e-National Indicator System provided by the ROK. Statistical analysis was employed to analyze the data. Findings - First, we confirm the extended results of the existing study by Chang and Lee (2023). Second, we demonstrate that the Aggregate IPI in ROK increased significantly in 2022 compared to 2021. We then provide an integrated interpretation on the significant increase in CPI and aggregate IPI in ROK, which complements Chang and Lee (2023) that limits their discussion to YoY CPI. Moreover, we show that the IPI of the semiconductor in ROK decreased significantly in 2022 compared to 2021. Research implications or Originality - Our results provide important insights into the recent changes in the CPI in the ROK. The results suggest that these changes can be partially attributed to various factors, such as the global supply chain disruptions resulting from the spread of the COVID-19 pandemic and the prolonged war between Russia and Ukraine, the side effect of quantitative easing by the US Federal Reserve, heat waves and droughts caused by climate change in ROK, a surge in demand following a gradual daily recovery, US-China trade conflict, etc. Our study shows statistically comprehensive results compared to the studies that limit their discussion to YoY average growth rate.

A Case Study on Seismic Refraction Tomography Survey for Subsurface Structure Interpretation (지하구조 해석을 위한 탄성파 굴절법 토모그라피 탐사 사례연구)

  • 유영준;유인걸;송무영
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.163-174
    • /
    • 2001
  • For quantitative evaluation of geotechnical engineering properties such as rippability and diggability, clear interpretation on the subsUJiace velocity structures should be preceded by figuring out top soil, weathered and soft rock layers, shape of basement, fracture zones, geologic boundary and etC. from the seismic refraction data. It is very important to set up suitable field parameters, which are the configuration of profile and its length, spacings of geophones and sources and topographic conditions, for increasing field data Quality. Geophone spacing of 3 to 5m is reconunended in the land slope area of house land development site. In refraction tomography technique, the number of source points should be more than a Cluarter of available channel number of instrument and the subsurface structure interpretation can be decreased the artifact of inversion by topographic effect. Compared with core logging data, it is shown that the velocity range of the soil is less than 700m/s, weathered rock 700~1,200m/s, soft rock 1,200~1,800m/s on the velocity tomogram section. And the upper limit of P-wave velocity for rippability is estimated 1,200 to 1,800m/s in land slope area of gneiss.

  • PDF

MRI Quantification Analysis on Fall in Sick Times of the Cerebral Infarction Patients Using Object-Centered Hierarchical Planning (객체 중심 계층적 계획을 이용한 뇌경색 환자의 시기별 MRI 정량적 분석에 관한 연구)

  • Ha, Kwang;Jeon, Gye-Rok;Kim, Gil-Joong
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.61-68
    • /
    • 2003
  • This paper presents a quantitative analysis method for fall in sick times of the cerebral infarction patients using three types of magnetic resonance image, which play an important role in deciding method of medical treatment. For this object, image characteristics obtained by three radiographic methods of MRI and their relation were analyzed by means of object centered hierarchical Planning method. This methode presents an approach to the knowledge based processes for image interpretation and analysis. To compare three type of MRI. a multiple warping algorithm and affine transform method performed for image matching. Then each fall in sick times level of cerebral infarction was quantified and pseudo-color mapping performed by comparing gray level value one another according to Previously obtained hand maid data. The result of this study was compared to a medical doctors decision.

The Characteristics of Korean Costume Colors and the Interpretation from the Perspective of Cultural Semiotics(1) (한국복식의 색채특성과 문화기호적 해석에 관한 연구[1])

  • Lee Jee-Hyun;Kim Young-In
    • Journal of the Korean Society of Costume
    • /
    • v.56 no.2 s.101
    • /
    • pp.56-69
    • /
    • 2006
  • The purpose of this study was to analyze the characteristics of Korean costume colors according to the diachronic stages of culture(Chosun dynasty, Modern times, Present age) and to interpretate the meanings of costume colors as a cultural code. To examine the color characteristics according to the cultural change, the quantitative analysis and the qualitative analysis were used. For the quantitative analysis 1535 color samples were collected and for the qualitative analysis on the sensitive aspect of Korean costume color, 340 color names were collected. The results of this study as follows; 1.'Red' and 'Blue' were preferred throughout the periods. In Chosun dynasty, the higher saturation of 'Red' and 'Blue', its symbolic meanings were more emphasized. 2. In the Modern times, 'Pink' was more distinctive than 'Red'. 'Pink' meant that the ecdysis of the traditional view of color. 3.'Yellow' of the low Saturation was used frequently in Chosun dynasty but in the Modern times, the use of 'Yellow' increased and the high saturation were used. In the Present age, the frequency of 'Yellow' was reduced relating to the increasing use of 'Brown'. 4.'Neutral Color' has changed according to the diachronic stages of the culture. 'Black' was increased and had a big meaning in the cultural aspect of the Modern times. In the Present age, 'Gray' and 'grayish colors' were increased related to Technology, Metals and High rise buildings.

Performance Evaluation of Pansharpening Algorithms for WorldView-3 Satellite Imagery

  • Kim, Gu Hyeok;Park, Nyung Hee;Choi, Seok Keun;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.413-423
    • /
    • 2016
  • Worldview-3 satellite sensor provides panchromatic image with high-spatial resolution and 8-band multispectral images. Therefore, an image-sharpening technique, which sharpens the spatial resolution of multispectral images by using high-spatial resolution panchromatic images, is essential for various applications of Worldview-3 images based on image interpretation and processing. The existing pansharpening algorithms tend to tradeoff between spectral distortion and spatial enhancement. In this study, we applied six pansharpening algorithms to Worldview-3 satellite imagery and assessed the quality of pansharpened images qualitatively and quantitatively. We also analyzed the effects of time lag for each multispectral band during the pansharpening process. Quantitative assessment of pansharpened images was performed by comparing ERGAS (Erreur Relative Globale Adimensionnelle de Synthèse), SAM (Spectral Angle Mapper), Q-index and sCC (spatial Correlation Coefficient) based on real data set. In experiment, quantitative results obtained by MRA (Multi-Resolution Analysis)-based algorithm were better than those by the CS (Component Substitution)-based algorithm. Nevertheless, qualitative quality of spectral information was similar to each other. In addition, images obtained by the CS-based algorithm and by division of two multispectral sensors were shaper in terms of spatial quality than those obtained by the other pansharpening algorithm. Therefore, there is a need to determine a pansharpening method for Worldview-3 images for application to remote sensing data, such as spectral and spatial information-based applications.

Genome-Wide Association Study of Metabolic Syndrome in Koreans

  • Jeong, Seok Won;Chung, Myungguen;Park, Soo-Jung;Cho, Seong Beom;Hong, Kyung-Won
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.187-194
    • /
    • 2014
  • Metabolic syndrome (METS) is a disorder of energy utilization and storage and increases the risk of developing cardiovascular disease and diabetes. To identify the genetic risk factors of METS, we carried out a genome-wide association study (GWAS) for 2,657 cases and 5,917 controls in Korean populations. As a result, we could identify 2 single nucleotide polymorphisms (SNPs) with genome-wide significance level p-values (< 5×108), 8 SNPs with genome-wide suggestive p-values (5×108 p < 1×105), and 2 SNPs of more functional variants with borderline p-values (5×105 p < 1×104). On the other hand, the multiple correction criteria of conventional GWASs exclude false-positive loci, but simultaneously, they discard many true-positive loci. To reconsider the discarded true-positive loci, we attempted to include the functional variants (nonsynonymous SNPs [nsSNPs] and expression quantitative trait loci [eQTL]) among the top 5,000 SNPs based on the proportion of phenotypic variance explained by genotypic variance. In total, 159 eQTLs and 18 nsSNPs were presented in the top 5,000 SNPs. Although they should be replicated in other independent populations, 6 eQTLs and 2 nsSNP loci were located in the molecular pathways of LPL, APOA5, and CHRM2, which were the significant or suggestive loci in the METS GWAS. Conclusively, our approach using the conventional GWAS, reconsidering functional variants and pathway-based interpretation, suggests a useful method to understand the GWAS results of complex traits and can be expanded in other genomewide association studies.

A Reviews on the Performance Evaluation Based on Network Analysis and Super-Efficiency Analysis (연결망분석과 초효율성분석의 결합을 통한 효율성 순위 측정에 관한 고찰)

  • Choi, Kyoung-Ho;Kwag, Hee-Jong
    • Journal of Digital Convergence
    • /
    • v.11 no.10
    • /
    • pp.255-262
    • /
    • 2013
  • Data envelopment analysis(DEA) is a linear programming procedure designed to evaluate the relative efficiency of a set of peer entities called decision making units which use the same inputs to produce the same outputs. It has been widely employed in a variety of disciplines as an efficiency or performance measurement tool for comparing a set of entities such as firms, banks, hospitals, nations and organizations. The method, however, cant's make the priority of their performance when many units have efficiency score of unity or 100 percent. In this paper, we propose a new approach which combine qualitative method(graphical approach using network analysis) and quantitative method(super-efficient analysis using DEA), and present the results of an empirical analysis using the data of the Korean professional baseball players. As a result, there were 12 DMU that priority is hardly realized through DEA. However, this problem could be solved with super-efficiency analyzing. Also, more in-depth interpretation was able through integrating results of dendrogram and super-efficiency analyzing and prospecting it in qualitative, quantitative ways.

A Quantitative Security Metric Based on MITRE ATT&CK for Risk Management (위험 관리를 위한 MITRE ATT&CK 기반의 정량적 보안 지표)

  • Haerin Kim;Seungwoon Lee;Su-Youn Hong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.53-60
    • /
    • 2024
  • Security assessment is an indispensable process for a secure network, and appropriate performance indicators must be present to manage risks. The most widely used quantitative indicator is CVSS. CVSS has a problem that it cannot consider context in terms of subjectivity, complexity of interpretation, and security risks. To compensate for these problems, we propose indicators that itemize and quantify four things: attackers, threats, responses, and assets, taking into account the security context of ISO/IEC 15408 documents. Vulnerabilities discovered through network scanning can be mapped to MITREATT&CK's technology by the connection between weaknesses and attack patterns (CAPEC). We use MITREATT&CK's Groups, Tactic, and Mitigations to produce consistent and intuitive scores. Accordingly, it is expected that security evaluation managers will have a positive impact on strengthening security such as corporate networks by expanding the range of choices among security indicators from various perspectives.