• Title/Summary/Keyword: Quantile-regression

Search Result 201, Processing Time 0.028 seconds

Monte Carlo simulation of the estimators for nonlinear regression model (비선형 회귀모형 추정량들의 몬데칼로 시뮬레이션에 의한 비교)

  • 김태수;이영해
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.6-10
    • /
    • 2000
  • In regression model we estimate the unknown parameters using various methods. There are the least squares method which is the most general, the least absolute deviation, the regression quantile and the asymmetric least squares method. In this paper, we will compare each others with two case: to begin with the theoretical comparison in the asymptotic sense, and then the practical comparison using Monte Carlo simulation for a small sample size.

  • PDF

Generation of radar rainfall data for hydrological and meteorological application (I) : bias correction and estimation of error distribution (수문기상학적 활용을 위한 레이더 강우자료 생산(I) : 편의보정 및 오차분포 산정)

  • Kim, Tae-Jeong;Lee, Dong-Ryul;Jang, Sang-Min;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Information on radar rainfall with high spatio-temporal resolution over large areas has been used to mitigate climate-related disasters such as flash floods. On the other hand, a well-known problem associated with the radar rainfall using the Marshall-Palmer relationship is the underestimation. In this study, we develop a new bias correction scheme based on the quantile regression method. This study employed a bivariate copula function method for the joint simulation between radar and ground gauge rainfall data to better characterize the error distribution. The proposed quantile regression based bias corrected rainfall showed a good agreement with that of observed. Moreover, the results of our case studies suggest that the copula function approach was useful to functionalize the error distribution of radar rainfall in an effective way.

Rainfall Intensity-Duration Thresholds for the Initiation of a Shallow Landslide in South Korea (우리나라에 있어서 산사태 유발강우의 강도-지속시간 한계)

  • Kim, Suk-Woo;Chun, Kun-Woo;Kim, Min-Seok;Kim, Min-Sik;Kim, Jin-Hak;Lee, Dong-Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.463-466
    • /
    • 2013
  • We examined relationship between rainfall and triggering of shallow landslides in South Korea, based on hourly rainfall data for 478 shallow landslides during 1963-2012. Rainfall intensity(I) and duration(D) relationship was analyzed to obtain the I-D threshold for the initiation of a shallow landslide using the quantile regression analysis. The I-D threshold equation from in this study is: $I=9.64D^{-0.27}$($4{\leq}D{\leq}76$), where I and D are expressed in millimeters per hour and hours, respectively. In addition, rainfall criteria were proposed to predict the potential to cause landslides, based on values of I-D and cumulative rainfall derived from quantile regression analysis. Our findings may provide essential data and important evidences for the improvement of landslide warning and evacuation system.

Do Firm Characteristics Determine Capital Structure of Pakistan Listed Firms? A Quantile Regression Approach

  • KHAN, Karamat;QU, Jing;SHAH, Muhammad Haroon;BAH, Kebba;KHAN, Irfan Ullah
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.5
    • /
    • pp.61-72
    • /
    • 2020
  • The purpose of this study is to investigate the determinants of the capital structure of firms operating in a developing economy, Pakistan. The quantile regression method is applied on a sample of 183 non-financial companies listed on the Pakistan Stock Exchange during the period of 2008-2017. Specifically, the empirical analysis focuses on changes in the coefficients of the determinants according to the leverage ratio quantiles of the examined listed firms. The findings show that the capital structure of Pakistan listed firms differs between firms in different quantiles of leverage. These differences are significant with the sign of explanatory variables changes with the level of leverage. The research result found tangibility, profitability and age to be positively related to leverage among listed firms in Pakistan. However, size, liquidity and non-debt tax shield (NDTS) are negatively related to leverage. A firm's growth and risk are found to be insignificant predictors of capital structure in Pakistan listed firms. Moreover, the study also found a significant impact of industry characteristic on leverage. The findings of this study indicate that an individual firm's finance policy needs to be responsive to the firm's characteristics and should match with the different borrowing requirements of listed firms.

A Stay Time Optimization Model Emergency Medical Center (EMC) (응급의료센터 체류시간 최적화)

  • Kim, Eun-Joo;Lim, Ji-Young;Ryu, Jeong-Soon;Cho, Sun-Hee;Bae, Na-Ri;Kim, Sang-Suk
    • Journal of Home Health Care Nursing
    • /
    • v.18 no.2
    • /
    • pp.81-87
    • /
    • 2011
  • Purpose: The aim of this study was to estimate optimization model of stay time in EMC. Methods: Data were collected at an EMC in a hospital using medical records from June to August in 2007. The sample size was 8,378. The data were structured by stay time for doctor visit, decision making, and discharge from EMC. Descriptive statistics were used to find out general characteristics of patients. Average mean and quantile regression models were adopted to estimate optimized stay time in EMC. Results: The stay times in EMC were highly skewed and non-normal distributions. Therefore, average mean as an indicator of optimal stay time was not appropriate. The total stay time using conditional quantile regression model was estimated about 110 min, that was about 166 min shorter than estimated time using average mean. Conclusion: According to these results, we recommend to use a conditional quantile regression model to estimate optimal stay time in EMC. We suggest that this results will be used to develop a guideline to manage stay time more effectively in EMC.

  • PDF

Estimating the CoVaR for Korean Banking Industry (한국 은행산업의 CoVaR 추정)

  • Choi, Pilsun;Min, Insik
    • KDI Journal of Economic Policy
    • /
    • v.32 no.3
    • /
    • pp.71-99
    • /
    • 2010
  • The concept of CoVaR introduced by Adrian and Brunnermeier (2009) is a useful tool to measure the risk spillover effect. It can capture the risk contribution of each institution to overall systemic risk. While Adrian and Brunnermeier rely on the quantile regression method in the estimation of CoVaR, we propose a new estimation method using parametric distribution functions such as bivariate normal and $S_U$-normal distribution functions. Based on our estimates of CoVaR for Korean banking industry, we investigate the practical usefulness of CoVaR for a systemic risk measure, and compare the estimation performance of each model. Empirical results show that bank makes a positive contribution to system risk. We also find that quantile regression and normal distribution models tend to considerably underestimate the CoVaR (in absolute value) compared to $S_U$-normal distribution model, and this underestimation becomes serious when the crisis in a financial system is assumed.

  • PDF

Long-term Trend Analysis of Extreme Temperatures in East Asia Using Quantile Regression (분위수 회귀분석을 이용한 동아시아 지역 극한기온의 장기 추세 분석)

  • Kim, Sang-Wook;Song, Kanghyun;Yoo, Young-Eun;Son, Seok-Woo;Jeong, Su-Jong
    • Journal of Climate Change Research
    • /
    • v.9 no.2
    • /
    • pp.157-169
    • /
    • 2018
  • This study explores the long?term trends of extreme temperatures of 270 observation stations in East Asia (China, Japan, and Korea) for 1961?2013. The 5th percentile of daily minimum temperatures (TN05%) and 95th percentile of daily maximum temperatures (TX95%), derived from the quantile regression, are particularly examined in term of their linear and nonlinear trends. The warming trends of TN05% are typically stronger than those of TX95% with more significant trends in winter than in summer for most stations. In both seasons, warming trends of TN05% tend to amplify with latitudes. The nonlinear trends, quantified by the $2^{nd}$?order polynomial fitting, exhibit different structures with seasons. While summer TN05% and TX95% were accelerated in time, winter TN05% underwent weakening of warming since the 2000s. These results suggest that extreme temperature trends in East Asia are not homogeneous in time and space.

A Development of Nonstationary Frequency Analysis Model using a Bayesian Multiple Non-crossing Quantile Regression Approach (베이지안 다중 비교차 분위회귀 분석 기법을 이용한 비정상성 빈도해석 모형 개발)

  • Uranchimeg, Sumiya;Kim, Yong-Tak;Kwon, Young-Jun;Kwon, Hyun-Han
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.3
    • /
    • pp.119-131
    • /
    • 2017
  • Global warming under the influence of climate change and its direct impact on glacial and sea level are known issue. However, there is a lack of research on an indirect impact of climate change such as coastal structure design which is mainly based on a frequency analysis of water level under the stationary assumption, meaning that maximum sea level will not vary significantly over time. In general, stationary assumption does not hold and may not be valid under a changing climate. Therefore, this study aims to develop a novel approach to explore possible distributional changes in annual maximum sea levels (AMSLs) and provide the estimate of design water level for coastal structures using a multiple non-crossing quantile regression based nonstationary frequency analysis within a Bayesian framework. In this study, 20 tide gauge stations, where more than 30 years of hourly records are available, are considered. First, the possible distributional changes in the AMSLs are explored, focusing on the change in the scale and location parameter of the probability distributions. The most of the AMSLs are found to be upward-convergent/divergent pattern in the distribution, and the significance test on distributional changes is then performed. In this study, we confirm that a stationary assumption under the current climate characteristic may lead to underestimation of the design sea level, which results in increase in the failure risk in coastal structures. A detailed discussion on the role of the distribution changes for design water level is provided.

Factors affecting regional population of Korea using Bayesian quantile regression (베이지안 분위회귀모형을 이용한 지역인구에 영향을 미치는 요인분석)

  • Kim, Minyoung;Oh, Man-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.823-835
    • /
    • 2021
  • Identification of factors influencing regional population is critical for establishing government's population policies as well as for improving residents' social, economic and cultural well-being in the region. In this study we analysed the data from 2019 Population Housing Survey in Korea to identify the factors affecting the population size in each of the three regions: Seoul, metropolitan cities, and provincial regions. We applied a Bayesian quantile regression to account for asymmetry and heteroscedasticity of data. The analysis results showed that the effects of factors vary greatly between the three regions of Seoul, metropolitan cities, and provincial regions as well as between sub regions within the same region. These results suggest that population-related variables have very heterogeneous characteristics from region to region and therefore it is important to establish customized population policies that suit regional characteristics rather than uniform population policies that apply to every region.

A Study on the Single-Family House Price Determinants Analyzed by Quantile Regression: In case of locating single family houses in Seoul (분위회귀분석을 적용한 단독주택의 가격형성요인에 관한 연구: 서울시 소재 단독주택을 대상으로)

  • Yang, Seungchul
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.5
    • /
    • pp.690-704
    • /
    • 2014
  • Single family houses are the traditional & typical type of house in human history. But there had been little attention to single family houses in Korea so that there was little studies on single family houses. This study aimed to analyse price determinants of single family houses in Seoul, using Quantile Regression Analysis(QRA). Because single family houses has large levels of price, quantile regression analysis is more proper than Ordinary Least Square(OLS). The Results of analysis showed that, land coverage ratio, zoning, passed years, basement floor, hight of land, shape of land were important factors to single family houses price. The scale of effect of land coverage ratio to single family houses price was different to price levels of single family houses. And basement floor affected more negative effects to middle price, location and zoning had positive effects to high price single family houses. The degree of influence of determinants of single family houses price was deferent by region, KangBuk and KangNam. In KangNam, land coverage ratio and accessibilities were more important in low price single family houses, green zone and more far way is affected positive effects on single family houses price. In Kangbuk, land coverage ratio affects similar effects on single family houses price.

  • PDF