• Title/Summary/Keyword: Quantification theory(II)

Search Result 28, Processing Time 0.019 seconds

The Evaluation of Failure Factors on Cutting Slopes of Forest Road by Quantification Theory(II) (수량화 II 류에 의한 임도절토사면의 붕괴요인 평가)

  • Cha, Du-Song;Ji, Byoung-Yun
    • Journal of Forest and Environmental Science
    • /
    • v.18 no.1
    • /
    • pp.7-14
    • /
    • 2001
  • On the basis of data obtained from forest road collapsed due to a heavy rainfall, this study carried out to evaluate the cutting slope failure factors of forest road by using Quantification theory(II). The results were summarized as follows. The factors on cutting slope failure was ranked in the order of cutting slope length, soil type, aspect, cutting slope gradients and slope gradients. And the slope failure was mainly occurred under such conditions as cutting slope length longer than 8m, soil type with soil, aspect of N, cutting slope gradients steeper than 600 and slope gradients greater than $35{\sim}40^{\circ}$.

  • PDF

A Study on the Development and Applicative Estimation of Safety Evaluation Model for Water Supply Pipelines using Quantification Theory Type II (수량화II류이론을 활용한 상수도관로의 안전성 평가 모델 개발 및 적용성 평가 연구)

  • Kim, Kibum;Shin, Hwisu;Seo, Jeewon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.59-67
    • /
    • 2016
  • Owing to time and cost constraints, new methods that would make it possible to evaluate the safety of the water supply pipeline in a less time- and cost-consuming manner are urgently needed. In response to this exigency, the present study developed a new statistical model to assess the safety of the water supply pipeline using the quantification theory type II. In this research, the safety of the water supply pipeline was defined as 'a possibility of the pipeline failure'. Quantification analysis was conducted on the qualitative data, such as pipe material, coating, and buried condition. The results of analyses demonstrate that the hit ratio of the quantification function amounted to 77.8% of hit ratio, which was a fair value. In addition, all variables that were included in the quantification function were logically valid and demonstrated statistically significant. According to the results derived from the application of the safety evaluation model, the coefficient of determination ($R^2$) between K-region's water supply pipeline safety and the safety inspection amounted to 0.80. Therefore, these findings provide meaningful insight for the measured values in real applications of the model. The results of the present study can also be meaningfully used in further research on safety evaluation of pipelines, establishing of renewal prioritization, as well as asset management planning of the water supply infrastructure.

Development of the Fuzzy Expert System for the Reinforcement of the Tunnel Construction (터널 시공 중 보강공법 선정용 퍼지 전문가 시스템 개발)

  • 김창용;박치현;배규진;홍성완;오명렬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.101-108
    • /
    • 2000
  • In this study, an expert system was developed to predict the safety of tunnel and choose proper tunnel reinforcement system using fuzzy quantification theory and fuzzy inference rule based on tunnel information database. The expert system developed in this study have two main parts named pre-module and post-module. Pre-module decides tunnel information imput items based on the tunnel face mapping information which can be easily obtained in-situ site. Then, using fuzzy quantification theory II, fuzzy membership function is composed and tunnel safety level is inferred through this membership function. The comparison result between the predicted reinforcement system level and measured ones was very similar. In-situ data were obtained in three tunnel sites including subway tunnel under Han river, This system will be very helpful to make the most of in-situ data and suggest proper applicability of tunnel reinforcement system developing more resonable tunnel support method from dependance of some experienced experts for the absent of guide.

  • PDF

Development of the Fuzzy Expert System for the Reinforcement of Tunels during Construction (터널 시공 중 보강공법 선전용 퍼지 전문가 시스템 개발)

  • 김창용;박치현;배규진;홍성완;오명렬
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.127-139
    • /
    • 2000
  • In the study, an expert system was developed to predict the safety of tunnel and select proper tunnel reinforcement system using fuzzy quantification theory and fuzzy inference rule based on tunnel information database, For this development, many tunnelling sites were investigated and the applied countermeasures were studied after building tunnel database. There will be benefit for the deciding tunnel reinforcement method in the case of poor ground condition. The expert system developed in the study has two main parts, pre-module and post-module. Pre-module is used to decide input items of tunnel information based on the tunnel face mapping information which can be easily obtained in in-situ site. Then, using fuzzy quantification theory II, fuzzy membership function is composed and tunnel safety level is inferred through this membership function. Post-module is used to infer the applicability of each reinforcement methods according to the face level. The result of the predicted reinforcement system level was similar to measured ones. In-situ data were obtained in three tunnel sites including subway tunnel under Han River. Therefore, this system will be helpful to make the mose of in-situ data available and suggest proper applicability of tunnel reinforcement system to development more resonable tunnel support method without dependance of some experienced experts opinions.

  • PDF

The Prediction of Cutting Slope Failure of Forest Road (임도(林道) 절토사면(切土斜面)의 붕괴위험(崩壞危險) 예측(豫測)에 관한 연구)

  • Cha, Du Song;Ji, Byoung Yun
    • Journal of Forest and Environmental Science
    • /
    • v.14 no.1
    • /
    • pp.145-156
    • /
    • 1998
  • On the basis of data obtained from 5 forest roads(Backyang, Byongatae, Saorang, Bukyu and Dangrim forest road) collapsed under a heavy rainfall in Chunchon, Kangwondo, this study was carried out to predict the cutting slope failure of forest road by using Quantification theory(II). The results were summarized as follows; The cutting slope failure was chiefly occurred by correlated action of road structure, vegetation and topographical factors. The cutting slope failure predicted by partial correlation coefficients and range values was characterized by longer than 8m of cutting slope length, depper than 2.5m of soil depth, between $30^{\circ}$ and $50^{\circ}$ of original ground slope gradient, absence of vegetation coverage on cutting slope, and greater than $60^{\circ}$ of cutting slope gradient. And the rate of correct discrimination by analysis of cutting slope failure was 90.1%.

  • PDF

An Information Theory-based Approach to Modeling the Information Processing of NPP Operators

  • Kim, Jong-Hyun;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.301-313
    • /
    • 2002
  • This paper proposes a quantitative approach to modeling the information processing of NPP operators. The aim of this work is to derive the amount of the information processed during a certain control task. The focus will be on i) developing a model for information processing of NPP operators and ii) quantifying the model. To resolve the problems of the previous approaches based on the information theory, i.e. the problems of single channel approaches, we primarily develop the information processing model having multiple stages, which contains information flows. Then the uncertainty of the information is quantified using the Conant’s model, 3 kind of information theory.

Evaluation and Prediction of Failure Factors by Quantification Theory(II) on Banking Slopes in Forest Road (수량화(數量化)II류(類)에 의한 임도(林道) 성토사면(盛土斜面)의 붕괴요인(崩壞要人) 평가 (評價) 및 예측(豫測))

  • Cha, Du Song;Ji, Byoung Yun
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.2
    • /
    • pp.240-248
    • /
    • 1999
  • On the basis of data obtained from five forest roads collapsed due to a heavy rainfall of 1995 in Chunchon, Kangwon-do, this study was carried out to evaluate and predict the fill slope failure of forest roads with four factors of forest road structure and those of location condition by using Quantification theory(II). The results were summarized as follows ; In the structure factors of forest road, the fill slope failure was mainly occurred in longitudinal gradients less than $2^{\circ}$ or more than $4^{\circ}$, distance of surface-flow longer than 80m, fill slope length greater than 6m, and fill slope gradients steeper than $35^{\circ}$. In the factors of location condition, the failure was mainly occurred in ridge portion of road position, weathered rock and soft rock of constituent material, slope gradients in the range from $35^{\circ}$ to $45^{\circ}$, and concave and convex of longitudinal slope forms. The priority order for factors influencing on fill slope failure was ranked by fill slope length, constituent material, road position, and so on. And the rate of correct discrimination by analysis of fill slope failure was estimated at the high prediction of 86.5%.

  • PDF

Development of Predicting Models of the Operating Speed and Operating environment Satisfaction Model in Expressways (고속도로의 주행속도예측 및 주행환경만족도 모형 개발에 관한 연구)

  • Kim, Jang-Uk;Jang, Il-Jun;Kim, Jeong-Hyeon;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.117-131
    • /
    • 2009
  • When most drivers take to the freeway, they don't necessarily pay attention to the geometric design. They expect proper design by depending on their own senses and recognition. When they evaluate the features of traveling on the freeway, they can think differently than engineers. The design needs to predict the exact speed of the driver to satisfy the driver's expectation, safety, pleasure and so on. This study categorized the factors influencing the speed of six freeways considering geometric and operational features to make a prediction model of speed. The model used multiple regression with these factors and produced statically appropriate results. This study utilized the principle component analysis and the quantification II analysis based on the image data of the satisfaction of the traveling environment collected through individual interviews. As a result, this study found the factors of satisfaction in a traveling environment. It made a satisfaction model of the traveling environment on freeways considering the change of driver's actual recognition and societal recognition using structural equations and the quantification II theory. Through the model made in this study, This model can present not only qualitative factors like satisfaction of traveling environment on freeways, but also the quantitative elements like speed. What is important is the evaluation of features of traveling on freeways reflected in the recognition and traffic environment felt by drivers.

Evaluation of Forest Recreation Functions through Quantification Method II (수량화II류를 이용한 산림휴양기능의 평가)

  • Kim, Hyun-Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.4
    • /
    • pp.437-444
    • /
    • 2008
  • This study has intended to evaluate the forest recreation functions to seek methods to designate the recreational areas inside a recreation forest. This study has Mt. Chung-ok in Korea as a study area to which Quantification method II as a valuation measure was applied. This study also has chosen a degree of recreational utility as an external criterion and six factors including Forest type, Forest age, Slope, Riparian area, Road, and Facility for the 173 stands in this area. As a result, absolute discriminated success rate was obtained, so that the first and second estimated correlation ratios were 82% and 74%, respectively. Road and Slope had great influences on the potential power of recreational functions. In the category, recreational function was more influenced by the existence of road and the lower degree of slope. Also, this study has drawn an evaluation map, which displayed the potential power of recreational functions by classifying three discrimination points such as H(High), M(Medium), and L(Low) through calculating the degree of recreational utility of the recreation forest for the stands by applying an estimation formula of recreational function in the stands. This study seems to be worthwhile in terms of actual, experimental, and intuitive interpretation for the degree of recreational utility calculated by using Quantification method theory.

GIS Based Analysis of Landslide Factor Effect in Inje Area Using the Theory of Quantification II (수량화 2종법을 이용한 GIS 기반의 인제지역 산사태 영향인자 분석)

  • Kim, Gi-Hong;Lee, Hwan-Gil
    • Spatial Information Research
    • /
    • v.20 no.3
    • /
    • pp.57-66
    • /
    • 2012
  • Gangwon-do has been suffering extensive landslide dam age, because its geography consists mainly of mountains. Analyzing the related factors is crucial for landslide prediction. We digitized the landslide and non-landslide spots on an aerial photo obtained right after a disaster in Inje, Gangwon-do. Three landslide factors-topographic, forest type, and soil factors-w ere statistically analyzed through GIS overlap analysis between topographic map, forest type map, and soil map. The analysis showed that landslides occurred mainly between the inclination of $20^{\circ}$ and $35^{\circ}$, and needleleaf tree area is more vulnerable to a landslide. About soil properties, an area with shallow effective soil depth and parent material of acidic rock has a greater chance of landslide.