• Title/Summary/Keyword: Quadrature method

Search Result 568, Processing Time 0.022 seconds

Time-discontinuous Galerkin quadrature element methods for structural dynamics

  • Minmao, Liao;Yupeng, Wang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.207-216
    • /
    • 2023
  • Three time-discontinuous Galerkin quadrature element methods (TDGQEMs) are developed for structural dynamic problems. The weak-form time-discontinuous Galerkin (TDG) statements, which are capable of capturing possible displacement and/or velocity discontinuities, are employed to formulate the three types of quadrature elements, i.e., single-field, single-field/least-squares and two-field. Gauss-Lobatto quadrature rule and the differential quadrature analog are used to turn the weak-form TDG statements into a system of algebraic equations. The stability, accuracy and numerical dissipation and dispersion properties of the formulated elements are examined. It is found that all the elements are unconditionally stable, the order of accuracy is equal to two times the element order minus one or two times the element order, and the high-order elements possess desired high numerical dissipation in the high-frequency domain and low numerical dissipation and dispersion in the low-frequency domain. Three fundamental numerical examples are investigated to demonstrate the effectiveness and high accuracy of the elements, as compared with the commonly used time integration schemes.

ON THE CONVERGENCE OF QUADRATURE RULE FOR SINGULAR INTEGRAL EQUATIONS

  • KIM, SEKI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.2
    • /
    • pp.85-97
    • /
    • 2000
  • A quadrature rule for the solution of Cauchy singular integral equation is constructed and investigated. This method to calculate numerically singular integrals uses classical Jacobi quadratures adopting Hunter's method. The proposed method is convergent under a reasonable assumption on the smoothness of the solution.

  • PDF

Free vibration analysis of cracked thin plates using generalized differential quadrature element method

  • Shahverdi, Hossein;Navardi, Mohammad M.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.345-355
    • /
    • 2017
  • The aim of the present study is to develop an elemental approach based on the differential quadrature method for free vibration analysis of cracked thin plate structures. For this purpose, the equations of motion are established using the classical plate theory. The well-known Generalized Differential Quadrature Method (GDQM) is utilized to discretize the governing equations on each computational subdomain or element. In this method, the differential terms of a quantity field at a specific computational point should be expressed in a series form of the related quantity at all other sampling points along the domain. However, the existence of any geometric discontinuity, such as a crack, in a computational domain causes some problems in the calculation of differential terms. In order to resolve this problem, the multi-block or elemental strategy is implemented to divide such geometry into several subdomains. By constructing the appropriate continuity conditions at each interface between adjacent elements and a crack tip, the whole discretized governing equations of the structure can be established. Therefore, the free vibration analysis of a cracked thin plate will be provided via the achieved eigenvalue problem. The obtained results show a good agreement in comparison with those found by finite element method.

A full path assessment approach for vibration serviceability and vibration control of footbridges

  • Zhu, Qiankun;Hui, Xiaoli;Du, Yongfeng;Zhang, Qiong
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.765-779
    • /
    • 2019
  • Most of the existing evaluation criteria of vibration serviceability rely on the peak acceleration of the structure rather than that of the people keeping their own body unmoved on the structure who is the real receiver of structural vibrations. In order to accurately assess the vibration serviceability, therefore, a full path assessment approach of vibration serviceability based on vibration source, path and receiver is not only tentatively proposed in this paper, taking the peak acceleration of receiver into account, but also introduce a probability procedure to provide more instructive information instead of a single value. In fact, semi-rigid supported on both sides of the structure is more consistent with the actual situation than simply supported or clamped due to the application of the prefabricated footbridge structures. So, the footbridge is regarded as a beam with semi-rigid supported on both sides in this paper. The differential quadrature-integral quadrature coupled method is not only to handle different type of boundary conditions, but also after being further modified via the introduction of an approximation procedure in this work, the time-varying system problem caused by human-structure interaction can be solved well. The analytical results of numerical simulations demonstrate that the modified differential quadrature-integral quadrature coupled method has higher reliability and accuracy compared with the mode superposition method. What's more, both of the two different passive control measures, the tuned mass damper and semi-rigid supported, have good performance for reducing vibrations. Most importantly, semi-rigid supported is easier to achieve the objective of reducing vibration compared with tuned mass damper in design stage of structure.

Buckling of fully and partially embedded non-prismatic columns using differential quadrature and differential transformation methods

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.221-238
    • /
    • 2008
  • Numerical solution to buckling analysis of beams and columns are obtained by the method of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for various support conditions considering the variation of flexural rigidity. The solution technique is applied to find the buckling load of fully or partially embedded columns such as piles. A simple semi- inverse method of DQ or HDQ is proposed for determining the flexural rigidities at various sections of non-prismatic column ( pile) partially and fully embedded given the buckling load, buckled shape and sub-grade reaction of the soil. The obtained results are compared with the existing solutions available from other numerical methods and analytical results. In addition, this paper also uses a recently developed technique, known as the differential transformation (DT) to determine the critical buckling load of fully or partially supported heavy prismatic piles as well as fully supported non-prismatic piles. In solving the problem, governing differential equation is converted to algebraic equations using differential transformation methods (DT) which must be solved together with applied boundary conditions. The symbolic programming package, Mathematica is ideally suitable to solve such recursive equations by considering fairly large number of terms.

On the $L_2(\Omega)$-error for the p-version under numerical quadrature rules

  • Kim, Ik-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.503-514
    • /
    • 1996
  • We consider non-constant coefficient elliptic equations of the type -div(a \bigtriangledown u) = f$, and employ the P-version of the finite element method as a numerical method for the approximate solutions. To compute the integrals in the variational form of the discrete problem we need the numerical quadrature rule scheme. In practice the integrations are seldom computed exactly. In this paper, we give an $L_2(\Omega)$-error estimate of $\Vert u = \tilde{u}_p \Vert_{0,omega}$ in comparison with $\Vert u = \tilde{u}_p \Vert_{1,omega}$, under numerical quadrature rules which are used for calculating the integrations in each of the stiffness matrix and the load vector.

  • PDF

Thermal vibration analysis of thick laminated plates by the moving least squares differential quadrature method

  • Wu, Lanhe
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.331-349
    • /
    • 2006
  • The stresses and deflections in a laminated rectangular plate under thermal vibration are determined by using the moving least squares differential quadrature (MLSDQ) method based on the first order shear deformation theory. The weighting coefficients used in MLSDQ approximation are obtained through a fast computation of the MLS shape functions and their partial derivatives. By using this method, the governing differential equations are transformed into sets of linear homogeneous algebraic equations in terms of the displacement components at each discrete point. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Solving this set of algebraic equations yields the displacement components. Then substituting these displacements into the constitutive equation, we obtain the stresses. The approximate solutions for stress and deflection of laminated plate with cross layer under thermal load are obtained. Numerical results show that the MLSDQ method provides rapidly convergent and accurate solutions for calculating the stresses and deflections in a multi-layered plate of cross ply laminate subjected to thermal vibration of sinusoidal temperature including shear deformation with a few grid points.

Vibration Analysis of Euler-Bernoulli Beam with Open Cracks on Elastic foundations Using Differential Transformation Method and Generalized Differential Quadrature Method (미분변환법과 일반화 미분구적법을 이용한 탄성 지반상의 열림 균열을 가진 Euler-Bernoulli 보의 진동 해석)

  • Hwang Ki-Sup;Yun Jong-Hak;Shin Young-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.279-286
    • /
    • 2006
  • The main purpose of this paper is to apply differential transformation method(DTM) and generalized differential quadrature method(GDQM) to vibration analysis of Euler-Bernoulli beam with open cracks on elastic foundation. In this paper the concepts of DTM and GDQM were briefly introduced. The governing equation of motion of the beam with open cracks on elastic foundation is derived. The cracks are modeled by massless substitute spring. The effects of the crack location, size and the foundation constants, on the natural frequencies of the beam, are investigated. Numerical calculations are carried out and compared with previous published results.

BER Analysis of a Quadrature Receiver with an Autocalibration Function (자동보정 기능을 가진 Quadrature 수신기의 BER 해석)

  • Kwon, Soon-Man;Lee, Jong-Moo;Cheon, Jong-Min;Park, Min-Kook;Kim, Jong-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.457-459
    • /
    • 2005
  • In this paper the BER consideration of a quadrature receiver that has an autocalibration method is considered. The analysis is based on the derivation of the statistical characteristics of the imbalances in gain and phase between in-phase and quadrature components that may cause severe performance degradation of the receiver. The density. mean and variance functions of the estimates of gain and phase imbalances are discussed. Then it is shown that the estimates are asymptotically minimum variance unbiased with respect to the integration time in sampling. A brief consideration on the BER calculation follows.

  • PDF