References
- Bachene, M., Tiberkak, R. and Rechak, S. (2009), "Vibration analysis of cracked Plates Using the Extended finite element method", Arch. Appl. Mech., 79, 249-262. https://doi.org/10.1007/s00419-008-0224-7
- Barooti, M. (2013), "Stability analysis of symmetric orthotropic composite plates with through the width delamination", MSc Thesis, Amirkabir University of Technology University, Tehran, Iran.
- Bellman, R and Casti, J. (1971), "Differential quadrature and long-term integration", J. Math. Anal. Appl., 34, 235-238. https://doi.org/10.1016/0022-247X(71)90110-7
- Bose, T. and Mohanty, A.R. (2013), "Vibration analysis of a rectangular thin isotropic plate with a part-through surface crack of arbitrary orientation and position", J. Sound Vib., 332, 7123-7141. https://doi.org/10.1016/j.jsv.2013.08.017
- Chen, W., Zhong, T.X. and Liang, S.P. (1997), "On the DQ analysis of geometrically non-linear vibration of immovably simply-supported beams", J. Sound Vib., 206, 745-748. https://doi.org/10.1006/jsvi.1997.1136
- Chen, W., Zhong, T.X. and Shu, C. (2002), "A Lyapunov formulation for efficient solution of the poisson and convection-diffusion equations by the differential quadrature method", J. Comput. Phys., 141, 78-84.
- Fantuzzi, N. (2013), "Generalized differential quadrature finite element method applied to advanced structural mechanics", Ph.D. Dissertation, University of Bologna , Bologna, Italy.
- Fantuzzi, N., Tornabene, F. and Viola, E. (2014), "Generalized differential quadrature finite element method for vibration analysis of arbitrarily shaped membranes", Int. J. Mech. Sci., 79, 216-251. https://doi.org/10.1016/j.ijmecsci.2013.12.008
- Han, J.B. and Liew, K. (1996), "The differential quadrature element method (DQEM) for axisymmetric bending of thick circular plates", The Third Asian-Pacific Conference on Computational Mechanics, Seoul, September.
- Hsu, M.H. (2005), "Vibration analysis of edge-cracked beam on elastic foundation with axial loading using the differential quadrature method", Comput. Meth. Appl. Mech. Eng., 194, 1-17. https://doi.org/10.1016/j.cma.2003.08.011
- Huang, C.S. and Leissa, A.W. (2009), "Vibration analysis of rectangular plates with side cracks via the Ritz method", J. Sound Vib., 323, 974-988. https://doi.org/10.1016/j.jsv.2009.01.018
- Huang, C.S., Leissa, A.W. and Chan, C.W. (2011), "Vibrations of rectangular plates with internal cracks or slits", Int. J. Mech. Sci., 53, 436-445. https://doi.org/10.1016/j.ijmecsci.2011.03.006
- Israr, A. (2008), "Vibration analysis of cracked aluminum plates", Ph.D. Dissertation, University of Glasgow.
- Karami, G. and Malekzadeh, P. (2003), "Application of a new differential quadrature methodology for free vibration analysis of plates", Int. J. Numer. Meth. Eng., 56, 847-868. https://doi.org/10.1002/nme.590
- Ke, L., Wang, Y. and Yang, J. (2012), "Nonlinear vibration of edged cracked FGM beams using differential quadrature method", Sci. China Phys. Mech. Astron., 55, 2114-2121. https://doi.org/10.1007/s11433-012-4704-y
- Leissa, A.W. (1973), "The free vibration of rectangular plates", J. Sound Vib., 31, 257-293. https://doi.org/10.1016/S0022-460X(73)80371-2
- Liu, F.L. (2001), "Differential quadrature element method for buckling analysis of rectangular Mindlin plates having discontinuities", Int. J. Solid. Struct., 38, 2305-2321. https://doi.org/10.1016/S0020-7683(00)00120-7
- Liu, F.L. and Liew, K. (1998), "Static analysis of Reissner-Mindlin plates by differential quadrature element method", J. Appl. Mech., 65,705-710. https://doi.org/10.1115/1.2789114
- Liu, F.L. and Liew, K. (1999), "Differential quadrature element method for static analysis of Reissner-Mindlin polar plates", Int. J. Solid. Struct., 36, 5101-5123. https://doi.org/10.1016/S0020-7683(98)00245-5
- Liu, F.L. and Liew, K. (1999), "Differential quadrature element method: a new approach for free vibration analysis of polar Mindlin plates having discontinuities", Comput. Meth. Appl. Mech. Eng., 179, 407-423. https://doi.org/10.1016/S0045-7825(99)00049-3
- Liu, F.L. and Liew, K. (1999), "Vibration analysis of discontinuous Mindlin plates by differential quadrature element method", J. Vib. Acoust., 121, 204-208. https://doi.org/10.1115/1.2893965
- Navardi, M.M. (2015), "Supersonic flutter analysis of thin cracked plate by Differential Quadrature Method", MSc Thesis, Amirkabir University of Technology University, Tehran, Iran.
- Reddy, J.N. (2004), Mechanics Of Laminated Composite Plates And Shells: Theory and Analysis, CRC press, London, British.
- Shu, C. (2012), Differential Quadrature And Its Application In Engineering, Springer, London, British.
- Shu, C. and Richards, B.E. (1992), "Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations", Int. J. Numer. Meth. Fluid., 15, 791-798. https://doi.org/10.1002/fld.1650150704
- Striz, A.G., Weilong, C. and Bert, C.W. (1994), "Static analysis of structures by the quadrature element method (QEM)", Int. J. Solid. Struct., 31, 2807-2818. https://doi.org/10.1016/0020-7683(94)90070-1
- Torabi, K., Afshari, H. and Aboutalebi, F.H. (2014), "A DQEM for transverse vibration analysis of multiple cracked non-uniform Timoshenko beams with general boundary conditions", Comput. Math. Appl., 67, 527-541. https://doi.org/10.1016/j.camwa.2013.11.010
- Viola, E., Tornabene. F. and Fantuzzi, N. (2013), "Generalized differential quadrature finite element method for cracked composite structures of arbitrary shape", Compos. Struct., 106, 815-834. https://doi.org/10.1016/j.compstruct.2013.07.034
- Wang, Y., Wang, X. and Zhou, Y. (2004), "Static and free vibration analyses of rectangular plates by the new version of the differential quadrature element method", Int. J. Numer. Meth. Eng., 59, 1207-1226. https://doi.org/10.1002/nme.913
- Wu, T. and Liu, G. (2001), "The generalized differential quadrature rule for fourth-order differential equations", Int. J. Numer. Meth. Eng., 50, 1907-1929. https://doi.org/10.1002/nme.102
- Zong, Z. and Zhang, Y. (2009), Advanced Differential Quadrature Methods, CRC Press, New York, NY, USA.
Cited by
- Study of buckling stability of cracked plates under uniaxial compression using singular FEM vol.69, pp.4, 2017, https://doi.org/10.12989/sem.2019.69.4.417
- Free vibration and harmonic response of cracked frames using a single variable shear deformation theory vol.74, pp.1, 2020, https://doi.org/10.12989/sem.2020.74.1.033
- Free vibration analysis of cracked plates using peridynamics vol.15, pp.suppl1, 2017, https://doi.org/10.1080/17445302.2020.1834266
- Free vibration analysis of functionally graded plates containing embedded curved cracks vol.79, pp.2, 2017, https://doi.org/10.12989/sem.2021.79.2.157
- Optimization of Free Vibration and Flutter Analysis of Composite Plates Using a Coupled Method of Genetic Algorithm and Generalized Differential Quadrature vol.13, pp.8, 2017, https://doi.org/10.1142/s1758825121500903
- Three-Dimensional Free Vibration Analyses of Preloaded Cracked Plates of Functionally Graded Materials via the MLS-Ritz Method vol.14, pp.24, 2021, https://doi.org/10.3390/ma14247712