• 제목/요약/키워드: Quadratic optimal control

검색결과 273건 처리시간 0.024초

A method for deciding weighting matrices in a linear discrete time optimal regulator problems to locate all poles in the specified region

  • Shin, Jae-Woong;Shimemura, Etsujiro;Kawasaki, Naoya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국제학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.729-733
    • /
    • 1988
  • In this paper, a new procedure for selecting weighting matrices in linear discrete time quadratic optimal control problems (LQ-problem) is proposed. In LQ problems, the quadratic weighting matrices are usually decided on trial and error in order to get a good response. But using the proposed method, the quadratic weights are decided in such a way that all poles of the closed loop system are located in a desired area for good responses as well as for stability and values of the quadratic cost functional are kept less then a specified value. The closed loop systems constructed by this method have merits of LQ problems as well as those of pole assignment problems. Taking into consideration that little is known about the relationship among the quadratic weights, the poles and the values of cost functional, this procedure is also interesting from the theoretical point of view.

  • PDF

최적 반복 학습 제어기법을 이용한 RTP의 웨이퍼 온도균일제어 (Control of Wafer Temperature Uniformity in Rapid Thermal Processing using an Optimal Iterative teaming Control Technique)

  • 이진호;진인식;이광순;최진훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.358-358
    • /
    • 2000
  • An iterative learning control technique based on a linear quadratic optimal criterion is proposed for temperature uniformity control of a silicon wafer in rapid thermal processing.

  • PDF

칼만 필터를 이용한 유연성 매니퓨레이터의 최적 제어 (Optimal Control of a Flexible Manipulator Using Kalman Filter)

  • 남호법;박종국
    • 한국통신학회논문지
    • /
    • 제14권2호
    • /
    • pp.155-163
    • /
    • 1989
  • 단일 링크 유연성 로보트 팔의 제어를 위해서 가정 모드 방법으로 유도된 동 특성 모델링에 QUADRATIC-최적제어 이론을 적용하였다. 이 제어 기법에 대한 제어 루우프 구성에는 모든 상태값의 피이트 백을 필요로 하지만 유연성 팔에 있어서 모드형태의 시 종속 변화율은 직접 출력으로부터 피이드백 될수 없기 때문에 최적 제어기를 실현하기 위해서는 상태 추정기의 도입이 필요하게 된다. 특히 시스템에 외란이나 측정에 노이즈가 발생할 때는 확률 추정 방법을 적용해서 상태를 추정해야 하는데 이를 위해서 칼만 필터를 사용하였다. 상태 추정기를 이용한 유연성 메니퓨레이터 팔의 시스템 모델을 모든 상태 값이 직접 측정될 수 있다고 가정한 유연성 시스템 모델과 시뮤레이션을 통해서 비교하였다.

  • PDF

계수조건부 LMI를 이용한 동시안정화 LQ 최적제어기 설계 (Rank-constrained LMI Approach to Simultaneous Linear Quadratic Optimal Control Design)

  • 김석주;천종민;김종문;김춘경;이종무;권순만
    • 제어로봇시스템학회논문지
    • /
    • 제13권11호
    • /
    • pp.1048-1052
    • /
    • 2007
  • This paper presents a rank-constrained linear matrix inequality(LMI) approach to simultaneous linear-quadratic(LQ) optimal control by static output feedback. Simultaneous LQ optimal control is formulated as an LMI optimization problem with a nonconvex rank condition. An iterative penalty method recently developed is applied to solve this rank-constrained LMI optimization problem. Numerical experiments are performed to illustrate the proposed method, and the results are compared with those of previous work.

On a pole assignment of linear discrete time system

  • Shin, Jae-Woong;Shimemura, Etsujiro;Kawasaki, Naoya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.884-889
    • /
    • 1989
  • In this paper, a new procedure for selecting weighting matrices in linear discrete time quadratic optimal control problem (LQ-problem) is proposed. In LQ-problems, the quadratic weighting matrices are usually decided on trial and error in order to get a good response. But using the proposed method, the quadratic weights are decided in such a way that all poles of the closed loop system are located in a desired region for good responses as well as for stability and values of the quadratic cost function are kept less then a specified value.

  • PDF

열간사상압연기의 루퍼시스템의 ILQ 제어기 설계 (Design of an ILQ Looper Controller for Rot Strip Mills)

  • 김성배;황이철
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1680-1689
    • /
    • 2002
  • This paper studies on the design of a looper control system for hot strip mill finisher using ILQ(Inverse Linear Quadratic optimal control) control method. The loopers are placed between each rolling stands and looper control plays an important role in regulating strip tension. The strip tension is controlled by raising and lowering the looper and by changing the speed of main work rolls. Firstly, it is shown from a nonlinear dynamic simulation that the strip tension is more influenced by difference of rolling speed than that of the looper angle. Secondly, a servo controller of the looper is designed using ILQ control method of which the characteristics and algorithms are simply introduced. Finally, the performances of the ILQ servo controller are compared with those of the LQI servo controller from computer simulation. In result, it is shown that the proposed ILQ servo controller has the better performances and robustness far parameter perturbations and disturbances than those of LQI controller.

빠른 채널 변화를 수반하는 CDMA 환경에서의 최적 전력 제어 (Optimized Power Control for CDMA System under Fast Channel Variance)

  • 김형석;변지영;유관호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.246-248
    • /
    • 2004
  • In this paper, we propose an optimal power control algorithm for CDMA cellular systems. The proposed power control algorithm is based on linear quadratic control theory. As the cellular system includes the changeability of system environment or various noise, Kalman filter is adapted to estimate the time-varying interference. This is the well-known linear quadratic Gaussian (LQG) theory. Through this algorithm, power transmission of each mobile with optimal one is more realistic. Simulation results show a fast convergence rate to optimal power value, and a rapid decreasing outage probability.

  • PDF

Controller Design for Fuzzy Systems via Piecewise Quadratic Value Functions

  • Park, Jooyoung;Kim, JongHo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권3호
    • /
    • pp.300-305
    • /
    • 2004
  • This paper concerns controller design for the Takagi-Sugeno (TS) fuzzy systems. The design method proposed in this paper is derived in the framework of the optimal control theory utilizing the piecewise quadratic optimal value functions. The major part of the proposed design procedure consists of solving linear matrix inequalities (LMIs). Since LMIs can be solved efficiently within a given tolerance by the recently developed interior point methods, the design procedure of this paper is useful in practice. A design example is given to illustrate the applicability of the proposed method.

Time varying LQR-based optimal control of geometrically exact Reissner's beam model

  • Suljo Ljukovac;Adnan Ibrahimbegovic;Maida Cohodar-Husic
    • Coupled systems mechanics
    • /
    • 제13권1호
    • /
    • pp.73-93
    • /
    • 2024
  • In this work, we propose combining an advanced optimal control algorithm with a geometrically exact beam model. For simplicity, the 2D Reissner beam model is chosen to represent large displacements and rotations. The difficulty pertains to the nonlinear nature of beam kinematics affecting the tangent stiffness matrix, making it non-constant, which compromises direct use of optimal control methods for linear problems. Thus, we seek to accommodate a time varying control using linear-quadratic regulator (LQR) algorithm with the proposed geometrically nonlinear beam model. We provide a detailed theoretical formulation and its numerical implementation in a variational format form. Several illustrative numerical examples are provided to confirm an excellent performance of the proposed methodology.

AN OPTIMAL CONTROL FOR THE WAVE EQUATION WITH A LOCALIZED NONLINEAR DISSIPATION

  • Kang, Yong-Han
    • East Asian mathematical journal
    • /
    • 제22권2호
    • /
    • pp.171-188
    • /
    • 2006
  • We consider the problem of an optimal control of the wave equation with a localized nonlinear dissipation. An optimal control is used to bring the state solutions close to a desired profile under a quadratic cost of control. We establish the existence of solutions of the underlying initial boundary value problem and of an optimal control that minimizes the cost functional. We derive an optimality system by formally differentiating the cost functional with respect to the control and evaluating the result at an optimal control.

  • PDF