• 제목/요약/키워드: Quadratic linear regression equation

검색결과 22건 처리시간 0.022초

THE USE OF MATHEMATICAL PROGRAMMING FOR LINEAR REGRESSION PROBLEMS

  • Park, Sung-Hyun
    • 한국경영과학회지
    • /
    • 제3권1호
    • /
    • pp.75-79
    • /
    • 1978
  • The use of three mathematical programming techniques (quadratic programming, integer quadratic programming and linear programming) is discussed to solve some problems in linear regression analysis. When the criterion is the minimization of the sum of squared deviations and the parameters are linearly constrained, the problem may be formulated as quadratic programming problem. For the selection of variables to find "best" regression equation in statistics, the technique of integer quadratic programming is proposed and found to be a very useful tool. When the criterion of fitting a linear regression is the minimization of the sum of absolute deviations from the regression function, the problem may be reduced to a linear programming problem and can be solved reasonably well.ably well.

  • PDF

Comparison of linear and non-linear equation for the calibration of roxithromycin analysis using liquid chromatography/mass spectrometry

  • Lim, Jong-Hwan;Yun, Hyo-In
    • 대한수의학회지
    • /
    • 제50권1호
    • /
    • pp.11-17
    • /
    • 2010
  • Linear and non-linear regressions were used to derive the calibration function for the measurement of roxithromycin plasma concentration. Their results were compared with weighted least squares regression by usual weight factors. In this paper the performance of a non-linear calibration equation with the capacity to account empirically for the curvature, y = ax$^{b}$ + c (b $\neq$ 1) is compared with the commonly used linear equation, y = ax + b, as well as the quadratic equation, y = ax$^{2}$+ bx + c. In the calibration curve (range of 0.01 to 10 ${\mu}g/mL$) of roxithromycin, both heteroscedasticity and nonlinearity were present therefore linear least squares regression methods could result in large errors in the determination of roxithromycin concentration. By the non-linear and weighted least squares regression, the accuracy of the analytical method was improved at the lower end of the calibration curve. This study suggests that the non-linear calibration equation should be considered when a curve is required to be fitted to low dose calibration data which exhibit slight curvature.

한우 혈청에서 호르몬 및 대사물질 농도들의 연령에 따른 변화에 관한 연구 (Change of Concentration of Hormones and Metabolic Materials in Serum by Age in Hanwoo)

  • 전기준;김종복;최재관;이창우;황정미;김형철;양부근;박춘근;나기준
    • 한국수정란이식학회지
    • /
    • 제18권3호
    • /
    • pp.215-225
    • /
    • 2003
  • 본 시험은 한우에서 연령에 따라 혈청성분들의 변화를 알아보기 위하여 한우 866두(거세 638, 비거세 228)에 대하여 혈청 농도를 분석하여 채혈시 일령을 독립 변량으로 하고 혈청 성분들을 종속변수로 하는 다항 회귀방정식으로 추정한 결과는 다음과 같다. 거세우나 비거세우 모두 같은 차수의 회귀방정식이 접합한 혈청 성분은 IGF- I (3차식) calium(1차식) 및 IP(1차식)이었고 거세우에서는 1차식이 적합하고 비거세우에서는 3차식이 적합한 혈청 성분은 testosterone와 creatinine었다. 반면에 HDLC는 거세우에서는 3차식이 적합하나 비거세우에서는 1차식이 적합한 것으로 나타났다. 그리고 거세우에서는 2차식이 적합한데 비거세우에서는 3차식이 적합한 혈청성분은 triglyceride 농도와 globulin농도 그리고 A/G비율 등이었고, 거세우에서는 3차식이 적합하고 비거세우에서는 2차식이 적합한 혈청성분은 BUN이었으며, 거세우에서는 2차식이 적합한데 비거세우에서는 1차식이 적합한 혈청성분은 TP와 albumin이었다. 한편 cortisol은 거세우나 비거세우에서 모두 3차식까지의 회귀방정식으로는 연령에 따른 변화를 설명하기가 적합하지 않았으며 glucose는 비거세우에서는 3차식 변화를 보이고 있으나 거세우에서는 3차식까지의 회귀방정식만으로는 연령에 따른 변화를 설명하기가 어려웠다. 가장 적합한 것으로 판단되는 혈청성분들의 회귀모형 중에서 비교적 R-SQUARE 값이 높은 것(R-SQUARE value>0.1)들은 거세우에서 ICF-I, albumin, creatinine, IP, HDLC 등이었으며, 비거세우에서 testosterone, IGF-I, TP, albumin, glucose, creatinine, IP, HDLC 등으로 나타났다. 따라서 IGF-I, albumin, creatinine, IP, HDLC 등은 거세우나 비거세우 모두에서 연령에 따라 비교적 큰 변화를 보이는 혈청 성분이라고 생각된다.

GMDH 알고리즘과 다항식 퍼지추론에 기초한 퍼지 다항식 뉴럴 네트워크 (Fuzzy Polynomial Neural Networks based on GMDH algorithm and Polynomial Fuzzy Inference)

  • 박호성;윤기찬;오성권
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.130-133
    • /
    • 2000
  • In this paper, a new design methodology named FNNN(Fuzzy Polynomial Neural Network) algorithm is proposed to identify the structure and parameters of fuzzy model using PNN(Polynomial Neural Network) structure and a fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Handling), and uses several types of polynomials such as linear, quadratic and modified quadratic besides the biquadratic polynomial used in the GMDH. The premise of fuzzy inference rules defines by triangular and gaussian type membership function. The fuzzy inference method uses simplified and regression polynomial inference method which is based on the consequence of fuzzy rule expressed with a polynomial such as linear, quadratic and modified quadratic equation are used. Each node of the FPNN is defined as fuzzy rules and its structure is a kind of neuro-fuzzy architecture Several numerical example are used to evaluate the performance of out proposed model. Also we used the training data and testing data set to obtain a balance between the approximation and generalization of proposed model.

  • PDF

중앙냉방시스템의 최적제어에 관한 연구 (Optimal Control for Central Cooling Systems)

  • 안병천
    • 설비공학논문집
    • /
    • 제12권4호
    • /
    • pp.354-362
    • /
    • 2000
  • Optimal supervisory control strategy for the set points of controlled variables in the central cooling system has been studied by computer simulation. A quadratic linear regression equation for predicting the total cooling system power in terms of the controlled and uncontrolled variables was developed using simulated data collected under different values of controlled and uncontrolled variables. The optimal set temperatures such as supply air temperature, chilled water temperature, and condenser water temperature, are determined such that energy consumption is minimized as uncontrolled variables, load, ambient wet bulb temperature, and sensible heat ratio, are changed. The chilled water loop pump and cooling tower fan speeds are controlled by the PID controller such that the supply air and condenser water set temperatures reach the set points designated by the optimal supervisory controller. The influences of the controlled variables on the total system and component power consumption was determined. It is possible to minimize total energy consumption by selecting the optimal set temperatures through the trade-off among the component powers. The total system power is minimized at lower supply, higher chilled water, and lower condenser water set temperature conditions.

  • PDF

퍼지추론규칙과 PNN 구조를 융합한 FPNN 알고리즘 (The FPNN Algorithm combined with fuzzy inference rules and PNN structure)

  • 박호성;박병준;안태천;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2856-2858
    • /
    • 1999
  • In this paper, the FPNN(Fuzzy Polynomial Neural Networks) algorithm with multi-layer fuzzy inference structure is proposed for the model identification of a complex nonlinear system. The FPNN structure is generated from the mutual combination of PNN (Polynomial Neural Network) structure and fuzzy inference method. The PNN extended from the GMDH(Group Method of Data Handling) uses several types of polynomials such as linear, quadratic and modifled quadratic besides the biquadratic polynomial used in the GMDH. In the fuzzy inference method, simplified and regression polynomial inference method which is based on the consequence of fuzzy rule expressed with a polynomial such as linear, quadratic and modified quadratic equation are used Each node of the FPNN is defined as a fuzzy rule and its structure is a kind of fuzzy-neural networks. Gas furnace data used to evaluate the performance of our proposed model.

  • PDF

Comparison of Snow Cover Fraction Functions to Estimate Snow Depth of South Korea from MODIS Imagery

  • Kim, Daeseong;Jung, Hyung-Sup;Kim, Jeong-Cheol
    • 대한원격탐사학회지
    • /
    • 제33권4호
    • /
    • pp.401-410
    • /
    • 2017
  • Estimation of snow depth using optical image is conducted by using correlation with Snow Cover Fraction (SCF). Various algorithms have been proposed for the estimation of snow cover fraction based on Normalized Difference Snow Index (NDSI). In this study we tested linear, quadratic, and exponential equations for the generation of snow cover fraction maps using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua satellite in order to evaluate their applicability to the complex terrain of South Korea and to search for improvements to the estimation of snow depth on this landscape. The results were validated by comparison with in-situ snowfall data from weather stations, with Root Mean Square Error (RMSE) calculated as 3.43, 2.37, and 3.99 cm for the linear, quadratic, and exponential approaches, respectively. Although quadratic results showed the best RMSE, this was due to the limitations of the data used in the study; there are few number of in-situ data recorded on the station at the time of image acquisition and even the data is mostly recorded on low snowfall. So, we conclude that linear-based algorithms are better suited for use in South Korea. However, in the case of using the linear equation, the SCF with a negative value can be calculated, so it should be corrected. Since the coefficients of the equation are not optimized for this area, further regression analysis is needed. In addition, if more variables such as Normalized Difference Vegetation Index (NDVI), land cover, etc. are considered, it could be possible that estimation of national-scale snow depth with higher accuracy.

수정된 GMDH 알고리즘 기반 다층 퍼지 추론 시스템에 관한 연구 (A Study on Multi-layer Fuzzy Inference System based on a Modified GMDH Algorithm)

  • 박병준;박춘성;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.675-677
    • /
    • 1998
  • In this paper, we propose the fuzzy inference algorithm with multi-layer structure. MFIS(Multi-layer Fuzzy Inference System) uses PNN(Polynomial Neural networks) structure and the fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Hendling), and uses several types of polynomials such as linear, quadratic and cubic, as well as the biquadratic polynomial used in the GMDH. In the fuzzy inference method, the simplified and regression polynomial inference methods are used. Here, the regression polynomial inference is based on consequence of fuzzy rules with the polynomial equations such as linear, quadratic and cubic equation. Each node of the MFIS is defined as fuzzy rules and its structure is a kind of neuro-fuzzy structure. We use the training and testing data set to obtain a balance between the approximation and the generalization of process model. Several numerical examples are used to evaluate the performance of the our proposed model.

  • PDF

Identification of Fuzzy Systems by means of the Extended GMDH Algorithm

  • Park, Chun-Seong;Park, Jae-Ho;Oh, Sung-Kwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.254-259
    • /
    • 1998
  • A new design methology is proposed to identify the structure and parameters of fuzzy model using PNN and a fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Handling), and uses several types of polynomials such as linear, quadratic and cubic besides the biquadratic polynomial used in the GMDH. The FPNN(Fuzzy Polynomial Neural Networks) algorithm uses PNN(Polynomial Neural networks) structure and a fuzzy inference method. In the fuzzy inference method, the simplified and regression polynomial inference methods are used. Here a regression polynomial inference is based on consequence of fuzzy rules with a polynomial equations such as linear, quadratic and cubic equation. Each node of the FPNN is defined as fuzzy rules and its structure is a kind of neuro-fuzzy architecture. In this paper, we will consider a model that combines the advantage of both FPNN and PNN. Also we use the training and testing data set to obtain a balance between the approximation and generalization of process model. Several numerical examples are used to evaluate the performance of the our proposed model.

  • PDF

Semiparametric support vector machine for accelerated failure time model

  • Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권4호
    • /
    • pp.765-775
    • /
    • 2010
  • For the accelerated failure time (AFT) model a lot of effort has been devoted to develop effective estimation methods. AFT model assumes a linear relationship between the logarithm of event time and covariates. In this paper we propose a semiparametric support vector machine to consider situations where the functional form of the effect of one or more covariates is unknown. The proposed estimating equation can be computed by a quadratic programming and a linear equation. We study the effect of several covariates on a censored response variable with an unknown probability distribution. We also provide a generalized approximate cross-validation method for choosing the hyper-parameters which affect the performance of the proposed approach. The proposed method is evaluated through simulations using the artificial example.