• 제목/요약/키워드: Quadratic equation

검색결과 537건 처리시간 0.021초

HYPERELASTIC LIE QUADRATICS

  • Ozkan Tukel, Gozde;Turhan, Tunahan;Yucesan, Ahmet
    • 호남수학학술지
    • /
    • 제41권2호
    • /
    • pp.369-380
    • /
    • 2019
  • Inspired by the problem of finding hyperelastic curves in a Riemannian manifold, we present a study on the variational problem of a hyperelastic curve in Lie group. In a Riemannian manifold, we reorganize the characterization of the hyperelastic curve with appropriate constraints. By using this equilibrium equation, we derive an Euler-Lagrange equation for the hyperelastic energy functional defined in a Lie group G equipped with bi-invariant Riemannian metric. Then, we give a solution of this equation for a null hyperelastic Lie quadratic when Lie group G is SO(3).

APPROXIMATELY QUADRATIC DERIVATIONS AND GENERALIZED HOMOMORPHISMS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제17권2호
    • /
    • pp.115-130
    • /
    • 2010
  • Let $\cal{A}$ be a unital Banach algebra. If f : $\cal{A}{\rightarrow}\cal{A}$ is an approximately quadratic derivation in the sense of Hyers-Ulam-J.M. Rassias, then f : $\cal{A}{\rightarrow}\cal{A}$ is anexactly quadratic derivation. On the other hands, let $\cal{A}$ and $\cal{B}$ be Banach algebras.Any approximately generalized homomorphism f : $\cal{A}{\rightarrow}\cal{B}$ corresponding to Cauchy, Jensen functional equation can be estimated by a generalized homomorphism.

FINDING THE SKEW-SYMMETRIC SOLVENT TO A QUADRATIC MATRIX EQUATION

  • Han, Yin-Huan;Kim, Hyun-Min
    • East Asian mathematical journal
    • /
    • 제28권5호
    • /
    • pp.587-595
    • /
    • 2012
  • In this paper we consider the quadratic matrix equation which can be defined be $$Q(X)=AX^2+BX+C=0$$, where X is a $n{\times}n$ unknown real matrix; A,B and C are $n{\times}n$ given matrices with real elements. Newton's method is considered to find the skew-symmetric solvent of the nonlinear matrix equations Q(X). We also show that the method converges the skew-symmetric solvent even if the Fr$\acute{e}$chet derivative is singular. Finally, we give some numerical examples.