References
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (2003), no. 3, 687-705.
- B. Belaid, E. Elhoucien, and Th. M. Rassias, On the genaralized Hyers-Ulam stability of the quadratic functional equation with a general involution, Non-linear Funct. Anal. Appl. 12 (2007), 247-262.
- Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, 1, Colloq. Publ. 48, Amer. Math. Soc. Providence, 2000.
- L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Iteration theory (ECIT '02), Grazer Math. Ber. Karl-Franzens-Univ. Graz, Graz, 346 (2004), 43-52.
- L. Cadariu and V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Applications, (2008), Art. ID 749392.
- S.C. Cheng and J.N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc. 86 (1994), 429-436.
- C. Felbin, Finite dimensional fuzzy normed linear spaces, Fuzzy Sets and Systems, 48 (1992), no. 2 239-248. https://doi.org/10.1016/0165-0114(92)90338-5
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
-
G. Isac and Th.M. Rassias, Stability of
${\pi}$ -additive mappings: Applications to nonlinear analysis, Internat. J. Math. Math. Sci. 19 (1996), no. 2, 219-228. https://doi.org/10.1155/S0161171296000324 - S. M. Jung and Z. H. Lee, A fixed point approach to the stability of quadratic functional equation with involution, Fixed Point Theory and App. 2008.
- A.K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets Sys. 12 (1984), 143-154. https://doi.org/10.1016/0165-0114(84)90034-4
- S.V. Krishna and K.K.M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems, 63 (1994), no. 2, 207-217. https://doi.org/10.1016/0165-0114(94)90351-4
- B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), no. 74, 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
- D. Mihett and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), no. 1, 567-572. https://doi.org/10.1016/j.jmaa.2008.01.100
- A.K. Mirmostafaee, M. Mirzavaziri, and M.S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets Sys. 159 (2008), 730-738. https://doi.org/10.1016/j.fss.2007.07.011
- A.K. Mirmostafaee and M.S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets Sys. 159 (2008), 720-729. https://doi.org/10.1016/j.fss.2007.09.016
- C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory Appl. (2007), Art. ID 50175.
- V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), no. 1, 91-96.
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- I.A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj-Napoca, 1979 (in Romanian).
- H. Stetkaer, Functional equations on abelian groups with involution, Aequationes Mathematicae, 54 (1997), no. 1-2, 144-172. https://doi.org/10.1007/BF02755452
- S. M. Ulam, Problems in Modern Mathematics,Wiley, New York 1960.
- C. Wu and J. Fang, Fuzzy generalization of Klomogoroffs theorem, J. Harbin Inst. Technol. 1 (1984), 1-7.
- J.Z. Xiao and X.H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets and Systems, 133 (2003), no. 3, 389-399. https://doi.org/10.1016/S0165-0114(02)00274-9