DOI QR코드

DOI QR Code

ON THE FUZZY STABILITY PROBLEM OF A QUADRATIC MAPPING WITH INVOLUTION

  • Received : 2018.06.09
  • Accepted : 2018.07.11
  • Published : 2019.02.15

Abstract

We prove the generalized Hyers-Ulam-Rassias stability problem of the quadratic functional equation with involution in the fuzzy quasi ${\beta}$-normed space by using the fixed point method.

Keywords

References

  1. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
  2. T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (2003), no. 3, 687-705.
  3. B. Belaid, E. Elhoucien, and Th. M. Rassias, On the genaralized Hyers-Ulam stability of the quadratic functional equation with a general involution, Non-linear Funct. Anal. Appl. 12 (2007), 247-262.
  4. Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, 1, Colloq. Publ. 48, Amer. Math. Soc. Providence, 2000.
  5. L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Iteration theory (ECIT '02), Grazer Math. Ber. Karl-Franzens-Univ. Graz, Graz, 346 (2004), 43-52.
  6. L. Cadariu and V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Applications, (2008), Art. ID 749392.
  7. S.C. Cheng and J.N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc. 86 (1994), 429-436.
  8. C. Felbin, Finite dimensional fuzzy normed linear spaces, Fuzzy Sets and Systems, 48 (1992), no. 2 239-248. https://doi.org/10.1016/0165-0114(92)90338-5
  9. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  10. G. Isac and Th.M. Rassias, Stability of ${\pi}$-additive mappings: Applications to nonlinear analysis, Internat. J. Math. Math. Sci. 19 (1996), no. 2, 219-228. https://doi.org/10.1155/S0161171296000324
  11. S. M. Jung and Z. H. Lee, A fixed point approach to the stability of quadratic functional equation with involution, Fixed Point Theory and App. 2008.
  12. A.K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets Sys. 12 (1984), 143-154. https://doi.org/10.1016/0165-0114(84)90034-4
  13. S.V. Krishna and K.K.M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems, 63 (1994), no. 2, 207-217. https://doi.org/10.1016/0165-0114(94)90351-4
  14. B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), no. 74, 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
  15. D. Mihett and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), no. 1, 567-572. https://doi.org/10.1016/j.jmaa.2008.01.100
  16. A.K. Mirmostafaee, M. Mirzavaziri, and M.S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets Sys. 159 (2008), 730-738. https://doi.org/10.1016/j.fss.2007.07.011
  17. A.K. Mirmostafaee and M.S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets Sys. 159 (2008), 720-729. https://doi.org/10.1016/j.fss.2007.09.016
  18. C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory Appl. (2007), Art. ID 50175.
  19. V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), no. 1, 91-96.
  20. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  21. I.A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj-Napoca, 1979 (in Romanian).
  22. H. Stetkaer, Functional equations on abelian groups with involution, Aequationes Mathematicae, 54 (1997), no. 1-2, 144-172. https://doi.org/10.1007/BF02755452
  23. S. M. Ulam, Problems in Modern Mathematics,Wiley, New York 1960.
  24. C. Wu and J. Fang, Fuzzy generalization of Klomogoroffs theorem, J. Harbin Inst. Technol. 1 (1984), 1-7.
  25. J.Z. Xiao and X.H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets and Systems, 133 (2003), no. 3, 389-399. https://doi.org/10.1016/S0165-0114(02)00274-9