• Title/Summary/Keyword: Quadratic Regression

Search Result 248, Processing Time 0.03 seconds

Fuzzy Polynomial Neural Networks based on GMDH algorithm and Polynomial Fuzzy Inference (GMDH 알고리즘과 다항식 퍼지추론에 기초한 퍼지 다항식 뉴럴 네트워크)

  • 박호성;윤기찬;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.130-133
    • /
    • 2000
  • In this paper, a new design methodology named FNNN(Fuzzy Polynomial Neural Network) algorithm is proposed to identify the structure and parameters of fuzzy model using PNN(Polynomial Neural Network) structure and a fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Handling), and uses several types of polynomials such as linear, quadratic and modified quadratic besides the biquadratic polynomial used in the GMDH. The premise of fuzzy inference rules defines by triangular and gaussian type membership function. The fuzzy inference method uses simplified and regression polynomial inference method which is based on the consequence of fuzzy rule expressed with a polynomial such as linear, quadratic and modified quadratic equation are used. Each node of the FPNN is defined as fuzzy rules and its structure is a kind of neuro-fuzzy architecture Several numerical example are used to evaluate the performance of out proposed model. Also we used the training data and testing data set to obtain a balance between the approximation and generalization of proposed model.

  • PDF

Predicting standardized ileal digestibility of lysine in full-fat soybeans using chemical composition and physical characteristics

  • Chanwit Kaewtapee;Rainer Mosenthin
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.1077-1084
    • /
    • 2024
  • Objective: The present work was conducted to evaluate suitable variables and develop prediction equations using chemical composition and physical characteristics for estimating standardized ileal digestibility (SID) of lysine (Lys) in full-fat soybeans (FFSB). Methods: The chemical composition and physical characteristics were determined including trypsin inhibitor activity (TIA), urease activity (UA), protein solubility in 0.2% potassium hydroxide (KOH), protein dispersibility index (PDI), lysine to crude protein ratio (Lys:CP), reactive Lys:CP ratio, neutral detergent fiber, neutral detergent insoluble nitrogen (NDIN), acid detergent insoluble nitrogen (ADIN), acid detergent fiber, L* (lightness), and a* (redness). Pearson's correlation (r) was computed, and the relationship between variables was determined by linear or quadratic regression. Stepwise multiple regression was performed to develop prediction equations for SID of Lys. Results: Negative correlations (p<0.01) between SID of Lys and protein quality indicators were observed for TIA (r = -0.80), PDI (r = -0.80), and UA (r = -0.76). The SID of Lys also showed a quadratic response (p<0.01) to UA, NDIN, TIA, L*, KOH, a* and Lys:CP. The best-fit model for predicting SID of Lys in FFSB included TIA, UA, NDIN, and ADIN, resulting in the highest coefficient of determination (R2 = 0.94). Conclusion: Quadratic regression with one variable indicated the high accuracy for UA, NDIN, TIA, and PDI. The multiple linear regression including TIA, UA, NDIN, and ADIN is an alternative model used to predict SID of Lys in FFSB to improve the accuracy. Therefore, multiple indicators are warranted to assess either insufficient or excessive heat treatment accurately, which can be employed by the feed industry as measures for quality control purposes to predict SID of Lys in FFSB.

The Distributions of Variance Components in Two Stage Regression Model

  • Park, Dong-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.1
    • /
    • pp.87-92
    • /
    • 1996
  • A regression model with nested erroe structure is considered. The regression model includes two error terms that are independent and normally distributed with zero means and constant variances. This error structure of the model gives correlated response variables. The distributions of variance components in the regression model with nested error structure are dervied by using theorems for quadratic forms.

  • PDF

Kernel Adatron Algorithm for Supprot Vector Regression

  • Kyungha Seok;Changha Hwang
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.843-848
    • /
    • 1999
  • Support vector machine(SVM) is a new and very promising classification and regression technique developed by Bapnik and his group at AT&T Bell laboratories. However it has failed to establish itself as common machine learning tool. This is partly due to the fact that SVM is not easy to implement and its standard implementation requires the optimization package for quadratic programming. In this paper we present simple iterative Kernl Adatron algorithm for nonparametric regression which is easy to implement and guaranteed to converge to the optimal solution and compare it with neural networks and projection pursuit regression.

  • PDF

Shape Prediction of Flexibly-reconfigurable Roll Forming Using Regression Analysis (회귀분석을 활용한 비정형롤판재성형 공정의 형상 예측)

  • Park, J.W.;Yoon, J.S.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.3
    • /
    • pp.182-188
    • /
    • 2016
  • Flexibly-reconfigurable roll forming (FRRF) is a novel sheet metal forming technology conducive to producing multi-curvature surfaces by controlling the strain distribution along longitudinal direction. In FRRF, a sheet metal is shaped into the desired curvature by using reconfigurable rollers and gaps between the rollers. As FRRF technology and equipment are under development, a simulation model corresponding to the physical FRRF would aid in investigating how the shape of a sheet varies with input parameters. To facilitate the investigation, the current study exploits regression analysis to construct a predictive model for the longitudinal curvature of the sheet. Variables considered as input parameters are sheet compression ratio, radius of curvature in the transverse direction, and initial blank width. Samples were generated by a three-level, three-factor full factorial design, and both convex and saddle curvatures are represented by a quadratic regression model with two-factor interactions. The fitted quadratic equations were verified numerically with R-squared values and root mean square errors.

Efficient Approximation Method for Constructing Quadratic Response Surface Model

  • Park, Dong-Hoon;Hong, Kyung-Jin;Kim, Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.876-888
    • /
    • 2001
  • For a large scaled optimization based on response surface methods, an efficient quadratic approximation method is presented in the context of the trust region model management strategy. If the number of design variables is η, the proposed method requires only 2η+1 design points for one approximation, which are a center point and tow additional axial points within a systematically adjusted trust region. These design points are used to uniquely determine the main effect terms such as the linear and quadratic regression coefficients. A quasi-Newton formula then uses these linear and quadratic coefficients to progressively update the two-factor interaction effect terms as the sequential approximate optimization progresses. In order to show the numerical performance of the proposed method, a typical unconstrained optimization problem and two dynamic response optimization problems with multiple objective are solved. Finally, their optimization results compared with those of the central composite designs (CCD) or the over-determined D-optimality criterion show that the proposed method gives more efficient results than others.

  • PDF

Design of Self-Organizing Networks with Competitive Fuzzy Polynomial Neuron (경쟁적 퍼지 다항식 뉴론을 가진 자기 구성 네트워크의 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.800-802
    • /
    • 2000
  • In this paper, we propose the Self-Organizing Networks(SON) based on competitive Fuzzy Polynomial Neuron(FPN) for the optimal design of nonlinear process system. The SON architectures consist of layers with activation nodes based on fuzzy inference rules. Here each activation node is presented as FPN which includes either the simplified or regression Polynomial fuzzy inference rules. The proposed SON is a network resulting from the fusion of the Polynomial Neural Networks(PNN) and a fuzzy inference system. The conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as liner, quadratic and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership functions are studied. Chaotic time series data used to evaluate the performance of our proposed model.

  • PDF

Genetic Parameters for Litter Size in Pigs Using a Random Regression Model

  • Lukovic, Z.;Uremovic, M.;Konjacic, M.;Uremovic, Z.;Vincek, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.160-165
    • /
    • 2007
  • Dispersion parameters for the number of piglets born alive were estimated using a repeatability and random regression model. Six sow breeds/lines were included in the analysis: Swedish Landrace, Large White and both crossbred lines between them, German Landrace and their cross with Large White. Fixed part of the model included sow genotype, mating season as month-year interaction, parity and weaning to conception interval as class effects. The age at farrowing was modelled as a quadratic regression nested within parity. The previous lactation length was fitted as a linear regression. Random regressions for parity on Legendre polynomials were included for direct additive genetic, permanent environmental, and common litter environmental effects. Orthogonal Legendre polynomials from the linear to the cubic power were fitted. In the repeatability model estimate of heritability was 0.07, permanent environmental effect as ratio was 0.04, and common litter environmental effect as ratio was 0.01. Estimates of genetic parameters with the random regression model were generally higher than in the repeatability model, except for the common litter environmental effect. Estimates of heritability ranged from 0.06 to 0.10. Permanent environmental effect as a ratio increased along a trajectory from 0.03 to 0.11. Magnitudes of common litter effect were small (around 0.01). The eigenvalues of covariance functions showed that between 7 and 8 % of genetic variability was explained by individual genetic curves of sows. This proportion was mainly covered by linear and quadratic coefficients. Results suggest that the random regression model could be used for genetic analysis of litter size.

A Study on the Spatial Distribution Characteristic of Urban Surface Temperature using Remotely Sensed Data and GIS (원격탐사자료와 GIS를 활용한 도시 표면온도의 공간적 분포특성에 관한 연구)

  • Jo, Myung-Hee;Lee, Kwang-Jae;Kim, Woon-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.1
    • /
    • pp.57-66
    • /
    • 2001
  • This study used four theoretical models, such as two-point linear model, linear regression model, quadratic regression model and cubic regression model which are presented from The Ministry of Science and Technology, for extraction of urban surface temperature from Landsat TM band 6 image. Through correlation and regression analysis between result of four models and AWS(automatic weather station) observation data, this study could verify spatial distribution characteristic of urban surface temperature using GIS spatial analysis method. The result of analysis for surface temperature by landcover showed that the urban and the barren land belonged to the highest surface temperature class. And there was also -0.85 correlation in the result of correlation analysis between surface temperature and NDVI. In this result, the meteorological environmental characteristics wuld be regarded as one of the important factor in urban planning.

  • PDF

Sequential Approximate Optimization of Shock Absorption System for Lunar Lander by using Quadratic Polynomial Regression Meta-model (2차 다항회귀 메타모델을 이용한 달착륙선 충격흡수 시스템의 순차적 근사 최적설계)

  • Oh, Min-Hwan;Cho, Young-Min;Lee, Hee-Jun;Cho, Jin-Yeon;Hwang, Do-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.314-320
    • /
    • 2011
  • In this work, optimization of two-stage shock absorption system for lunar lander has been carried out. Because of complexity of impact phenomena of shock absorption system, a 1-D constitutive model is proposed to describe the behavior of shock absorption system. Quadratic polynomial regression meta-model is constructed by using a commercial software ABAQUS with the proposed 1-D constitutive model, and sequential approximate optimization of two-stage shock absorption system has been carried out along with the constructed meta-model. Through the optimization, it is verified that landing impact force on lunar lander can be considerably reduced by changing the cell size and foil thickness of honeycomb structure in two-stage shock absorption system.