• 제목/요약/키워드: QoS (Quality of Service)

검색결과 1,467건 처리시간 0.033초

Dynamic Cell Reconfiguration Framework for Energy Conservation in Cellular Wireless Networks

  • Son, Kyuho;Guruprasad, Ranjini;Nagaraj, Santosh;Sarkar, Mahasweta;Dey, Sujit
    • Journal of Communications and Networks
    • /
    • 제18권4호
    • /
    • pp.567-579
    • /
    • 2016
  • Several energy saving techniques in cellular wireless networks such as active base station (BS) selection, transmit power budget adaptation and user association have been studied independently or only part of these aspects have been considered together in literature. In this paper, we jointly tackle these three problems and propose an integrated framework, called dynamic cell reconfiguration (DCR). It manages three techniques operating on different time scales for ultimate energy conservation while guaranteeing the quality of service (QoS) level of users. Extensive simulations under various configurations, including the real dataset of BS topology and utilization, demonstrate that the proposed DCR can achieve the performance close to an optimal exhaustive search. Compared to the conventional static scheme where all BSs are always turned on with their maximum transmit powers, DCR can significantly reduce energy consumption, e.g., more than 30% and 50% savings in uniform and non-uniform traffic distribution, respectively.

Capacity Analysis of Internet Protocol Television (IPTV) over IEEE 802.11ac Wireless Local Area Networks (WLANs)

  • Virdi, Chander Kant;Shah, Zawar;Levula, Andrew;Ullah, Imdad
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.327-333
    • /
    • 2022
  • Internet Protocol Television (IPTV) has emerged as a personal entertainment source for home users. Streaming IPTV content over a wireless medium with good Quality of Service (QoS) can be a challenging task as IPTV content requires more bandwidth and Wireless Local Area Networks (WLANs) are susceptible to packet loss, delay and jitter. This research presents the capacity of IPTV using User Datagram Protocol (UDP) and TCP Friendly Rate Control (TFRC) over IEEE 802.11ac WLANs in good and bad network conditions. Experimental results show that in good network conditions, UDP and TFRC could accommodate a maximum of 78 and 75 Standard Definition Television (SDTV) users, respectively. In contrast, 15 and 11 High-Definition Television (HDTV) users were supported by UDP and TFRC, respectively. Performance of UDP and TFRC was identical in bad network conditions and same number of SDTV and HDTV users were supported by TFRC and UDP. With background Transmission Control Protocol (TCP) traffic, both UDP and TFRC can support nearly the same number of SDTV users. It was found that TFRC can co-exist fairly with TCP by giving more throughput to TCP unlike UDP.

Multiple Constraint Routing Protocol for Frequency Diversity Multi-channel Mesh Networks using Interference-based Channel Allocation

  • Torregoza, John Paul;Hwang, Won-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제10권12호
    • /
    • pp.1632-1644
    • /
    • 2007
  • Wireless Mesh Networks aim to attain large connectivity with minimum performance degradation, as network size is increase. As such, scalability is one of the main characteristics of Wireless Mesh Networks that differentiates it from other wireless networks. This characteristic creates the need for bandwidth efficiency strategies to ensure that network performance does not degrade as the size of the network increase. Several researches have been done to realize mesh networks. However, the researches conducted were mostly focused on a per TCP/IP layer basis. Also, the studies on bandwidth efficiency and bandwidth improvement are usually dealt with as separate issues. This paper aims to simultaneously study bandwidth efficiency and improvement. Aside from optimizing the bandwidth given a fixed capacity, the capacity is also increased using results of physical layer studies. In this paper, the capacity is improved by using the concept of non-overlapping channels for wireless communication. A channel allocation scheme is conceptualized to choose the transmission channel that would optimize the network performance parameters with consideration of chosen Quality of Service (QoS) parameters. Network utility maximization is used to optimize the bandwidth after channel selection. Furthermore, a routing scheme is proposed using the results of the network utilization method and the channel allocation scheme to find the optimal path that would maximize the network gain.

  • PDF

근거리통신망의 진화방향에 관한 연구 (A Study on the Evolution of Local Area Networks)

  • 주기호;류황
    • 공학논문집
    • /
    • 제3권1호
    • /
    • pp.131-138
    • /
    • 1998
  • 본 논문은 기술적인 진보보다는 개념적 변화에 초점을 맞추어 근거리통신망의 진화 방향에 대하여 살펴본다. 현재까지 많이 사용되는 주요한 근거리통신망 기술을 토폴로지, 채널의 타이밍구조, 매체접근제어 항목으로 분류하고 최근 근거리통신망에서 나타난 진전된 기술 및 새로운 개념들을 살핀다. 근거리통신망의 진화에서 가장 영향을 미친 근본적인 요소는 집중형 백본 개념으로 보인다. 종래의 LAN의 개념과는 근본적으로는 다른 ATM 기술이 LAN에 적용되고 있으며, 전통적인 근거리통신망이 ATM과 경쟁하기 위해서는 QOS의 지원이 가능하도록 발전해야 될 것이다.

  • PDF

영상 단말에 전송된 이미지를 이용한 전송 영상 복원 (Reconstruction of Transmitted Images from Images Displayed on Video Terminals)

  • 박수경;이선오;심동규
    • 대한전자공학회논문지SP
    • /
    • 제49권1호
    • /
    • pp.49-57
    • /
    • 2012
  • 본 논문에서는 영상 단말에 디스플레이되는 영상들을 이용하여 전송된 영상의 원본 상태를 예측하는 복원 알고리듬을 제안한다. 제안한 알고리듬은 카메라를 이용하여 비디오 단말 스크린에 나타나는 영상들을 취득한다. 전송된 영상들은 카메라를 통해 획득된 영상들을 이용하여 예측해야 하지만, 일반적으로 카메라를 통해 획득된 영상들은 영상 출력 장치와 카메라의 특성에 의해 기하학적 왜곡과 컬러 왜곡을 포함하게 된다. 우리는 가중치 선형 모델을 이용하는 컬러 왜곡과 호모그라피를 이용하는 기하 왜곡 보정 알고리듬을 이용하여 이러한 왜곡들을 보정하는 알고리듬을 제안한다. 실험결과, 제안한 알고리듬이 예측한 영상과 원본 영상과의 PSNR이 28 ~ 29 정도로 나타났다.

클라우드 컴퓨팅에서 데이터 분산 최적화를 위한 방법에 대한 연구 (A Novel Approach for Optimizing Data Distribution in Cloud Computing)

  • 밤복흥;이슬람;고메즈 마우리시오;모하마드 아 잠;허의남
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.183-186
    • /
    • 2013
  • Modern day despite technology advancements that manufacture a new generation of mobile devices with generous resources, the fact that they can offer only limited processing capacity still remains a painful experience. So far, a number of research studies have been carried out, trying to eliminate problems arising from shortcomings in the connection between thin clients and cloud networks, yet little have been found efficient. In this paper, we present a novel approach, taking advantage of collaboration of thin and thick clients, particularly aiming at optimizing data distribution by splitting data and utilizing cloud computing (CC) resources so that expected Quality-of-Service (QoS) requirements can be met. Moreover, we conduct simulations to evaluate our approach. Our results evaluation shows that our approach has better performance than existing approaches.

Secure Beamforming with Artificial Noise for Two-way Relay Networks

  • Li, Dandan;Xiong, Ke;Du, Guanyao;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권6호
    • /
    • pp.1418-1432
    • /
    • 2013
  • This paper studies the problem of secure information exchange between two sources via multiple relays in the presence of an eavesdropper. To this end, we propose a relay beamforming scheme, i.e., relay beamforming with artificial noise (RBwA), where the relay beamforming vector and the artificial noise vector are jointly designed to maintain the received signal-to-interference-ratio (SINR) at the two sources over a predefined Quality of Service (QoS) threshold while limiting the received SINR at the eavesdropper under a predefined secure threshold. For comparison, the relay beamforming without artificial noise (RBoA) is also considered. We formulate two optimization problems for the two schemes, where our goal is to seek the optimal beamforming vector to minimize the total power consumed by relay nodes such that the secrecy of the information exchange between the two sources can be protected. Since both optimization problems are nonconvex, we solve them by semidefinite program (SDP) relaxation theory. Simulation results show that, via beamforming design, physical layer secrecy of two-way relay networks can be greatly improved and our proposed RBwA outperforms the RBoA in terms of both low power consumption and low infeasibility rate.

중복 통신 채널을 가진 CAN 시스템에서 분산 메시지 할당 방법에 관한 연구 (A Study on Distributed Message Allocation Method of CAN System with Dual Communication Channels)

  • 김만호;이종갑;이석;이경창
    • 제어로봇시스템학회논문지
    • /
    • 제16권10호
    • /
    • pp.1018-1023
    • /
    • 2010
  • The CAN (Controller Area Network) system is the most dominant protocol for in-vehicle networking system because it provides bounded transmission delay among ECUs (Electronic Control Units) at data rates between 125Kbps and 1Mbps. And, many automotive companies have chosen the CAN protocol for their in-vehicle networking system such as chassis network system because of its excellent communication characteristics. However, the increasing number of ECUs and the need for more intelligent functions such as ADASs (Advanced Driver Assistance Systems) or IVISs (In-Vehicle Information Systems) require a network with more network capacity and the real-time QoS (Quality-of-Service). As one approach to enhancing the network capacity of a CAN system, this paper introduces a CAN system with dual communication channel. And, this paper presents a distributed message allocation method that allocates messages to the more appropriate channel using forecast traffic of each channel. Finally, an experimental testbed using commercial off-the-shelf microcontrollers with two CAN protocol controllers was used to demonstrate the feasibility of the CAN system with dual communication channel using the distributed message allocation method.

A Novel Spectrum Access Strategy with ${\alpha}$-Retry Policy in Cognitive Radio Networks: A Queueing-Based Analysis

  • Zhao, Yuan;Jin, Shunfu;Yue, Wuyi
    • Journal of Communications and Networks
    • /
    • 제16권2호
    • /
    • pp.193-201
    • /
    • 2014
  • In cognitive radio networks, the packet transmissions of the secondary users (SUs) can be interrupted randomly by the primary users (PUs). That is to say, the PU packets have preemptive priority over the SU packets. In order to enhance the quality of service (QoS) for the SUs, we propose a spectrum access strategy with an ${\alpha}$-Retry policy. A buffer is deployed for the SU packets. An interrupted SU packet will return to the buffer with probability ${\alpha}$ for later retrial, or leave the system with probability (1-${\alpha}$). For mathematical analysis, we build a preemptive priority queue and model the spectrum access strategy with an ${\alpha}$-Retry policy as a two-dimensional discrete-time Markov chain (DTMC).We give the transition probability matrix of the Markov chain and obtain the steady-state distribution. Accordingly, we derive the formulas for the blocked rate, the forced dropping rate, the throughput and the average delay of the SU packets. With numerical results, we show the influence of the retrial probability for the strategy proposed in this paper on different performance measures. Finally, based on the trade-off between different performance measures, we construct a cost function and optimize the retrial probabilities with respect to different system parameters by employing an iterative algorithm.

Efficient Resource Slicing Scheme for Optimizing Federated Learning Communications in Software-Defined IoT Networks

  • 담프로힘;맛사;김석훈
    • 인터넷정보학회논문지
    • /
    • 제22권5호
    • /
    • pp.27-33
    • /
    • 2021
  • With the broad adoption of the Internet of Things (IoT) in a variety of scenarios and application services, management and orchestration entities require upgrading the traditional architecture and develop intelligent models with ultra-reliable methods. In a heterogeneous network environment, mission-critical IoT applications are significant to consider. With erroneous priorities and high failure rates, catastrophic losses in terms of human lives, great business assets, and privacy leakage will occur in emergent scenarios. In this paper, an efficient resource slicing scheme for optimizing federated learning in software-defined IoT (SDIoT) is proposed. The decentralized support vector regression (SVR) based controllers predict the IoT slices via packet inspection data during peak hour central congestion to achieve a time-sensitive condition. In off-peak hour intervals, a centralized deep neural networks (DNN) model is used within computation-intensive aspects on fine-grained slicing and remodified decentralized controller outputs. With known slice and prioritization, federated learning communications iteratively process through the adjusted resources by virtual network functions forwarding graph (VNFFG) descriptor set up in software-defined networking (SDN) and network functions virtualization (NFV) enabled architecture. To demonstrate the theoretical approach, Mininet emulator was conducted to evaluate between reference and proposed schemes by capturing the key Quality of Service (QoS) performance metrics.