• 제목/요약/키워드: QTLS

검색결과 208건 처리시간 0.041초

Genome-wide association studies to identify quantitative trait loci and positional candidate genes affecting meat quality-related traits in pigs

  • Jae-Bong Lee;Ji-Hoon Lim;Hee-Bok Park
    • Journal of Animal Science and Technology
    • /
    • 제65권6호
    • /
    • pp.1194-1204
    • /
    • 2023
  • Meat quality comprises a set of key traits such as pH, meat color, water-holding capacity, tenderness and marbling. These traits are complex because they are affected by multiple genetic and environmental factors. The aim of this study was to investigate the molecular genetic basis underlying nine meat quality-related traits in a Yorkshire pig population using a genome-wide association study (GWAS) and subsequent biological pathway analysis. In total, 45,926 single nucleotide polymorphism (SNP) markers from 543 pigs were selected for the GWAS after quality control. Data were analyzed using a genome-wide efficient mixed model association (GEMMA) method. This linear mixed model-based approach identified two quantitative trait loci (QTLs) for meat color (b*) on chromosome 2 (SSC2) and one QTL for shear force on chromosome 8 (SSC8). These QTLs acted additively on the two phenotypes and explained 3.92%-4.57% of the phenotypic variance of the traits of interest. The genes encoding HAUS8 on SSC2 and an lncRNA on SSC8 were identified as positional candidate genes for these QTLs. The results of the biological pathway analysis revealed that positional candidate genes for meat color (b*) were enriched in pathways related to muscle development, muscle growth, intramuscular adipocyte differentiation, and lipid accumulation in muscle, whereas positional candidate genes for shear force were overrepresented in pathways related to cell growth, cell differentiation, and fatty acids synthesis. Further verification of these identified SNPs and genes in other independent populations could provide valuable information for understanding the variations in pork quality-related traits.

도열병 내구 저항성 자포니카 벼품종 팔공의 저항성 관련 유전좌위 분석 (Molecular Mapping of the Blast Resistance Loci in the Durable Resistance Japonica Rice Cultivar, Palgong)

  • 백만기;조영찬;박현수;정종민;김우재;남정권;김춘송;권순욱;김보경
    • 한국육종학회지
    • /
    • 제51권4호
    • /
    • pp.395-403
    • /
    • 2019
  • 우리나라의 도열병 균계에 내구저항성을 보이는 자포니카 벼 품종 팔공의 저항성 유전좌위를 분석한 결과, 팔공 allele에 의한 저항성 관련 putative QTLs가 2번, 4번, 7번, 11번 염색체상에서 9개 좌위들이 확인되었다. 팔공의 allele에 의한 도열병 저항성 연관 유전자좌들 중 qBn2.3 (Ch r. 2), qBn4.2 (Ch r. 4), qBn11.1 및 qBn11.2 (Ch r. 11) 등 4개 좌위는 표현형 변이의 28-56.7%를 설명하는 major QTL이었고, 이들 좌위에서는 1-4개의 저항성 관련 유전자들이 위치하는 것으로 보고되었다. 팔공 allele의 5개 QTLs qBn2.1, qBn2.4 (Ch r. 2), qBn4.1 (Chr. 4), qBn7.1 및 qBn7.2 (Ch r. 7) 등은 표현형 변이를 9.7-18.8% 설명하였으며, 이들 좌위들 중 2번 염색체상의 qBn2.1를 제외한 4개 QTLs 좌위에서는 다른 유전자의 보고가 없어 팔공 고유의 도열병 저항성 관련 유전 요소들로 추정 된다. 팔공의 도열병 내구 저항성은 2번, 4번, 7번, 11번 염색체상의 9개 QTLs들의 상호 작용에 의한 것으로 생각되며, 특히 목도열병 내구 저항성 유전자 Pb1이 위치하는 것으로 보고된 좌위의 qBn11.2는 표현형 변이 56.7%를 설명하였고 내구저항성에서 중요한 역할을 하는 것으로 생각된다. 팔공의 줄무늬잎마름병 저항성은 qBn11.2 좌위의 Stvb-i 유전자에 의한 것으로 생각된다.

벼의 낱알 특성에 관여하는 양적형질유전자좌 분석 (Genetic Mapping of QTLs that Control Grain Characteristics in Rice (Oryza sativa L.))

  • 홈레지나와세라;피카아유사피트리;이현숙;윤병욱;김경민
    • 생명과학회지
    • /
    • 제25권8호
    • /
    • pp.925-931
    • /
    • 2015
  • 미립 품질 향상을 위하여 미립 형태를 결정하는 특성을 위한 분자육종기술을 확립하기 위하여 미립과 관련된 양적형질 유전자좌를 탐색하고, 이들 환경요인과 상호작용 효과를 분석한 결과는 다음과 같다. 인디카 품종인 ‘청청’과 자포니카형인 ‘낙동’이 교배된 조합 F1의 약배양에 의해 양성된 120 계통(DH 집단)과 217개의 DNA 마커를 이용하여 전체 길이가 2,067cM이고, 마커간 평균거리가 9.5cM인 유전자 지도를 작성하였다. 미립형태 관련 유전자좌 분석에서 미립의 외형인 길이, 폭, 두께, 장폭비, 천립중과 관련하여 14개의 QTL이 탐색되었다. 현미의 미립길이 관련 3개의 QTL (qGL2, qGL5, qGL7), 미립 폭 관련 3개의 QTL (qGW2-1, qGW2-2, qGW2-3), 미립 두께 관련 1개의 QTL (qGT2), 장폭비 관련 6개의 QTL (qLWR2-1, qLWR2-2, qLWR2-3, qLWR2-4, qLWR7, qLWR12) 및 천립중 관련 1개의 QTL (qTGW8)이 선발되었다. 미립 장폭비 관련 4개의 QTL은 미립길이와 미립두께에서 동일한 염색체 상에서 확인되었다. 본 연구에서 구명된 QTL 마커들은 쌀 품종개량을 위하여 이용될 수 있을 것이라 판단된다.

A whole genome sequence association study of muscle fiber traits in a White Duroc×Erhualian F2 resource population

  • Guo, Tianfu;Gao, Jun;Yang, Bin;Yan, Guorong;Xiao, Shijun;Zhang, Zhiyan;Huang, Lusheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권5호
    • /
    • pp.704-711
    • /
    • 2020
  • Objective: Muscle fiber types, numbers and area are crucial aspects associated with meat production and quality. However, there are few studies of pig muscle fibre traits in terms of the detection power, false discovery rate and confidence interval precision of whole-genome quantitative trait loci (QTL). We had previously performed genome scanning for muscle fibre traits using 183 microsatellites and detected 8 significant QTLs in a White Duroc×Erhualian F2 population. The confidence intervals of these QTLs ranged between 11 and 127 centimorgan (cM), which contained hundreds of genes and hampered the identification of QTLs. A whole-genome sequence imputation of the population was used for fine mapping in this study. Methods: A whole-genome sequences association study was performed in the F2 population. Genotyping was performed for 1,020 individuals (19 F0, 68 F1, and 933 F2). The whole-genome variants were imputed and 21,624,800 single nucleotide polymorphisms (SNPs) were identified and examined for associations to 11 longissimus dorsi muscle fiber traits. Results: A total of 3,201 significant SNPs comprising 7 novel QTLs showing associations with the relative area of fiber type I (I_RA), the fiber number per square centimeter (FN) and the total fiber number (TFN). Moreover, one QTL on pig chromosome 14 was found to affect both FN and TFN. Furthermore, four plausible candidate genes associated with FN (kinase non-catalytic C-lobe domain containing [KNDC1]), TFN (KNDC1), and I_RA (solute carrier family 36 member 4, contactin associated protein like 5, and glutamate metabotropic receptor 8) were identified. Conclusion: An efficient and powerful imputation-based association approach was utilized to identify genes potentially associated with muscle fiber traits. These identified genes and SNPs could be explored to improve meat production and quality via marker-assisted selection in pigs.

Development of the pyramiding lines with strong culm genes derived from crosses among the SCM near isogenic lines in rice

  • Ookawa, Taiichiro;Kamahora, Eri;Ebitani, Takeshi;Yamaguchi, Takuya;Murata, Kazumasa;Iyama, Yukihide;Ozaki, Hidenobu;Adachi, Shunsuke;Hirasawa, Tadashi;Kanekatsu, Motoki
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.21-21
    • /
    • 2017
  • Severe lodging has recurrently occurred at strong typhoon's hitting in recent climate change. The identification of quantitative trait loci (QTLs) and their responsible genes associated with a strong culm and their pyramiding are important for developing high-yielding varieties with a superior lodging resistance. To identify QTLs for lodging resistance, the tropical japonica line, Chugoku 117 and the improved indica variety, Habataki were selected as the donor parent, as these had thick and strong culms compared with the temperate japonica varieties in Japan such as Koshihikari. By using chromosome segment substitution lines (CSSLs) in which chromosome segments from the japonica variety were replaced to them from Habataki, we identified the QTLs for strong culm on chrs. 1 and 6, which were designated as STRONG CULM1 (SCM1) and STRONG CULM2 (SCM2), respectively. By using recombinant inbred lines (BILs) derived from a cross between Chugoku 117 and Koshihikari and introgression lines, we also identified the other QTLs for strong culm on chrs. 3 and 2, which were designated as STRONG CULM3 (SCM3) and STRONG CULM4 (SCM4), respectively. Candidate region of SCM1 includes Gn1 related to grain number. SCM2 was identical to APO1, a gene related to the control of panicle branch number, and SCM3 was identical to FC1, a strigolactone signaling associated gene, by performing fine mapping and positional cloning of these genes. To evaluate the effects of SCM1~SCM4 on lodging resistance, the Koshihiakri near isogenic line (NIL) with the introgressed SCM1 or SCM2 locus of Habataki (NIL-SCM1, NIL-SCM2) and the another Koshihikari NIL with the introgeressed SCM3 or SCM4 locus of Chugoku 117 (NIL-SCM3, NIL-SCM4) were developed. Then, we developed the pyramiding lines with double or triple combinations derived from step-by-step crosses among NIL-SCM1 NIL-SCM4. Triple pyramiding lines (NIL-SCM1+2+3, ~ NIL-SCM1+3+4) showed the largest culm diameter and the highest culm strength among the combinations and increased spikelet number due to the pleiotropic effects of these genes. Pyramiding of strong culm genes resulted in much increased culm thickness, culm strength and spikelet number due to their additive effect. SCM1 mainly contributed to enhance their pyramiding effect. These results in this study suggest the importance of identifying the combinations of superior alleles of strong culm genes among natural variation and pyramiding these genes for improving high-yielding varieties with a superior lodging resistance.

  • PDF

Genome-wide association study reveals genetic loci and candidate genes for average daily gain in Duroc pigs

  • Quan, Jianping;Ding, Rongrong;Wang, Xingwang;Yang, Ming;Yang, Yang;Zheng, Enqin;Gu, Ting;Cai, Gengyuan;Wu, Zhenfang;Liu, Dewu;Yang, Jie
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권4호
    • /
    • pp.480-488
    • /
    • 2018
  • Objective: Average daily gain (ADG) is an important target trait of pig breeding programs. We aimed to identify single nucleotide polymorphisms (SNPs) and genomic regions that are associated with ADG in the Duroc pig population. Methods: We performed a genome-wide association study involving 390 Duroc boars and by using the PorcineSNP60K Beadchip and two linear models. Results: After quality control, we detected 3,5971 SNPs, which included seven SNPs that are significantly associated with the ADG of pigs. We identified six quantitative trait loci (QTL) regions for ADG. These QTLs included four previously reported QTLs on Sus scrofa chromosome (SSC) 1, SSC5, SSC9, and SSC13, as well as two novel QTLs on SSC6 and SSC16. In addition, we selected six candidate genes (general transcription factor 3C polypeptide 5, high mobility group AT-hook 2, nicotinamide phosphoribosyltransferase, oligodendrocyte transcription factor 1, pleckstrin homology and RhoGEF domain containing G4B, and ENSSSCG00000031548) associated with ADG on the basis of their physiological roles and positional information. These candidate genes are involved in skeletal muscle cell differentiation, diet-induced obesity, and nervous system development. Conclusion: This study contributes to the identification of the casual mutation that underlies QTLs associated with ADG and to future pig breeding programs based on marker-assisted selection. Further studies are needed to elucidate the role of the identified candidate genes in the physiological processes involved in ADG regulation.

Mapping QTLs for Tissue Culture Response of Mature Wheat Embryos

  • Jia, Haiyan;Yi, Dalong;Yu, Jie;Xue, Shulin;Xiang, Yang;Zhang, Caiqin;Zhang, Zhengzhi;Zhang, Lixia;Ma, Zhengqiang
    • Molecules and Cells
    • /
    • 제23권3호
    • /
    • pp.323-330
    • /
    • 2007
  • The mature wheat embryo is arguably one of the best explants for genetic transformation because of its unlimited availability and lack of growth season restriction. However, an efficient regeneration system using mature wheat embryos (Triticum aestivum L.) is still not available. To identify genes related to the tissue culture response (TCR) of wheat, QTLs for callus induction from mature embryos and callus regeneration were mapped using an RIL population derived from the cross of 'Wangshuibai' with 'Nanda2419', which has a good TCR. By whole genome scanning we identified five, four and four chromosome regions conditioning, respectively, percent embryos forming a callus (PEFC), percent calli regenerating plantlets (PCRP), and number of plantlets per regenerating callus (NPRC). The major QTLs QPefc.nau-2A and QPcrp.nau-2A were mapped to the long arm of chromosome 2A, explaining up to 22.8% and 17.6% of the respective phenotypic variance. Moreover, two major QTLs for NPRC were detected on chromosomes 2D and 5D; these together explained 51.6% of the phenotypic variance. We found that chromosomes 2A, 2D, 5A, 5B and 5D were associated via different intervals with at least two of the three TCR indexes used. Based on this study and other reports, the TCRs of different explant types of wheat may be under the control of shared or tightly linked genes, while different genes or gene combinations may govern the stages from callus induction to plantlet regeneration. The importance of group 2 and 5 chromosomes in controlling the TCRs of Triticeae crops and the likely conservation of the corresponding genes in cereals are discussed.

저온에서 벼의 발아율 및 발아속도 관련 양적형질 유전자좌(QTL) 분석 (QTL Analysis of Germination Rate and Germination Coefficient of Velocity under Low Temperature in Rice)

  • 김진희;모영준;하수경;정지웅;정종민
    • 한국작물학회지
    • /
    • 제66권1호
    • /
    • pp.8-17
    • /
    • 2021
  • 자포니카 벼의 저온 스트레스 내성 증진을 위하여, RIL 계통을 이용하여 저온 스트레스 내성 QTL을 탐색하였다. 이를 통하여 (1) 5, 9번 염색체에서 저온발아에 관련한 '기호벼' 유래 QTL, qLTG5와 qLTG9를 확인하였으며, 7, 9번 염색체에서 저온 발아속도에 관련한 '밀양23호' 및 '기호벼' 유래 QTL, qOGCV7, qOGCV9를 확인하였다. (2) Duncan 검정결과, 그룹VII [qLTG5+qLTG9 (qOGCV9)], 그룹VIII [qLTG5+qOGCV7+qLTG9 (qOGCV9)]의 계통들이 저온 스트레스에 내성이 있는 것으로 확인 되었다. (3) 최근 발표된 RIL 집단 담수내성 계통과 비교한 결과, 저온 스트레스에도 내성이 있으면서 담수발아에도 내성이 있는 것으로 확인된 총 2개의 유망 유전자원을 선발하였다. 본 연구의 결과를 통해 저온 및 혐기 관련 QTL의 집적은 벼의 저온에서의 발아 및 초기 입모율을 높여 저온스트레스 내성 개선에 도움이 되는 것으로 판단 되었으며, 선발된 유망 계통은 향후 직파재배 품종 육성에 유용한 유전자원으로 활용되어 직파재배의 안정성 증대에 기여할 것으로 기대된다.

Global Transcriptome-Wide Association Studies (TWAS) Reveal a Gene Regulation Network of Eating and Cooking Quality Traits in Rice

  • Weiguo Zhao;Qiang He;Kyu-Won Kim;Feifei Xu;Thant Zin Maung;Aueangporn Somsri;Min-Young Yoon;Sang-Beom Lee;Seung-Hyun Kim;Joohyun Lee;Soon-Wook Kwon;Gang-Seob Lee;Bhagwat Nawade;Sang-Ho Chu;Wondo Lee;Yoo-Hyun Cho;Chang-Yong Lee;Ill-Min Chung;Jong-Seong Jeon;Yong-Jin Park
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.207-207
    • /
    • 2022
  • Eating and cooking quality (ECQ) is one of the most complex quantitative traits in rice. The understanding of genetic regulation of transcript expression levels attributing to phenotypic variation in ECQ traits is limited. We integrated whole-genome resequencing, transcriptome, and phenotypic variation data from 84 Japonica accessions to build a transcriptome-wide association study (TWAS) based regulatory network. All ECQ traits showed a large phenotypic variation and significant phenotypic correlations among the traits. TWAS analysis identified a total of 285 transcripts significantly associated with six ECQ traits. Genome-wide mapping of ECQ-associated transcripts revealed 66,905 quantitative expression traits (eQTLs), including 21,747 local eQTLs, and 45,158 trans-eQTLs, regulating the expression of 43 genes. The starch synthesis-related genes (SSRGs), starch synthase IV-1 (SSIV-1), starch branching enzyme 1 (SBE1), granule-bound starch synthase 2 (GBSS2), and ADP-glucose pyrophosphorylase small subunit 2a (OsAGPS2a) were found to have eQTLs regulating the expression of ECQ associated transcripts. Further, in co-expression analysis, 130 genes produced at least one network with 22 master regulators. In addition, we developed CRISPR/Cas9-edited glbl mutant lines that confirmed the role of alpha-globulin (glbl) in starch synthesis to validate the co-expression analysis. This study provided novel insights into the genetic regulation of ECQ traits, and transcripts associated with these traits were discovered that could be used in further rice breeding.

  • PDF