References
- Brooke MH, Kaiser KK. Muscle fiber types: how many and what kind? Arch Neurol 1970; 23:369-79. https://doi.org/10.1001/archneur.1970.00480280083010
- Sosnicki A. Histopathological observation of stress myopathy in M. longissimus in the pig and relationships with meat quality, fattening and slaughter traits. J Anim Sci 1987;65:584-96. https://doi.org/10.2527/jas1987.652584x
- Swatland HJ, Cassens RG. Observations on the postmortem histochemistry of myofibers from stress susceptible pigs. J Anim Sci 1973;37:885-91. https://doi.org/10.2527/jas1973.374885x
- Franck M, Figwer P, Godfraind C, Poirel MT, Khazzaha A, Ruchoux MM. Could the pale, soft, and exudative condition be explained by distinctive histological characteristics? J Anim Sci 2007;85:746-53. https://doi.org/10.2527/jas.2006-190
- Rehfeldt C, Fiedler I, Dietl G, Ender K. Myogenesis and postnatal skeletal muscle cell growth as influenced by selection. Livest Prod Sci 2000;66:177-88. https://doi.org/10.1016/S0301-6226(00)00225-6
- Hu ZL, Fritz ER, Reecy JM. Animalqtldb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Res 2007;35(Suppl 1):D604-9. https://doi.org/10.1093/nar/gkl946
-
Nii M, Hayashi T, Mikawa S, et al. Quantitative trait loci mapping for meat quality and muscle fiber traits in a Japanese wild boar
$\times$ Large White intercross. J Anim Sci 2005;83:308-15. https://doi.org/10.2527/2005.832308x - Wimmers K, Fiedler I, Hardge T, Murani E, Schellander K, Ponsuksili S. QTL for microstructural and biophysical muscle properties and body composition in pigs. BMC Genet 2006;7:15. https://doi.org/10.1186/1471-2156-7-15
- Estelle J, Gil F, Vazquez JM, et al. A quantitative trait locus genome scan for porcine muscle fiber traits reveals overdominance and epistasis. J Anim Sci 2008;86:3290-9. https://doi.org/10.2527/jas.2008-1034
- Li WB, Ren J, Zhu WC, et al. Mapping QTL for porcine muscle fibre traits in a White Duroc x Erhualian F2 resource population. J Anim Breed Genet 2009;126:468-74. https://doi.org/10.1111/j.1439-0388.2009.00805.x
- Guo YY. Genome-wide association study on muscle fiber and eye muscle area traits in swine [Ph.D. Thesis]. Jizhong, China: Shanxi Agricultural University; 2015.
- Li N. Genome-wide association studies for pig meat traits and exploration of major genes [Ph.D. Thesis]. Beijing, China: China Agricultural University; 2016.
-
Yang GC, Ren J, Li SJ, et al. Genome-wide identification of QTL for age at puberty in gilts using a large intercross
$F_{2}$ population between White Duroc$\times$ Erhualian. Genet Sel Evol 2008;40:529-39. https://doi.org/10.1051/gse:2008019 - Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 2009;5:e1000529. https://doi.org/10.1371/journal.pgen.1000529
- McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297-303. https://doi.org/10.1101/gr.107524.110
- Danecek P, Auton A, Abecasis G, et al. The variant call format and VCFtools. Bioinformatics 2011;27:2156-8. https://doi.org/10.1093/bioinformatics/btr330
- Delaneau O, Howie B, Cox AJ, Zagury JF, Marchini J. Haplotype estimation using sequencing reads. Am J Hum Genet 2013;93:687-96. https://doi.org/10.1016/j.ajhg.2013.09.002
- Zhou X, Carbonetto P, Stephens M. Polygenic modeling with bayesian sparse linear mixed models. PLoS Genet 2013;9:e1003264. https://doi.org/10.1371/journal.pgen.1003264
- Storey JD. The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Statist 2003;31:2013-35. https://doi.org/10.1214/aos/1074290335
- Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Statist 2001;29:1165-88. https://doi.org/10.1214/aos/1013699998.
- Rebai A, Goffinet B, Mangin B. Approximate thresholds of interval mapping tests for QTL detection. Genetics 1994;138:235-40. https://doi.org/10.1093/genetics/138.1.235
- Pearson TA, Manolio TA. How to interpret a genome-wide association study. JAMA 2008;299:1335-44. https://doi.org/10.1001/jama.299.11.1335
- Nishimura D, Sakai H, Sato T, et al. Roles of ADAM8 in elimination of injured muscle fibers prior to skeletal muscle regeneration. Mech Dev 2015;135:58-67. https://doi.org/10.1016/j.mod.2014.12.001
- Liang JJ, Wang W, Sorensen D, et al. Cellular prion protein regulates its own alpha-cleavage through ADAM8 in skeletal muscle. J Biol Chem 2012;287:16510-20. https://doi.org/10.1074/jbc.M112.360891
- Wechsler-Reya RJ, Elliott KJ, Prendergast GC. A role for the putative tumor suppressor Bin1 in muscle cell differentiation. Mol Cell Biol 1998;18:566-75. https://doi.org/10.1128/ MCB.18.1.566
- Muller AJ, Baker JF, DuHadaway JB, et al. Targeted disruption of the murine Bin1/Amphiphysin II gene does not disable endocytosis but results in embryonic cardiomyopathy with aberrant myofibril formation. Mol Cell Biol 2003;23:4295-306. https://doi.org/10.1128/MCB.23.12.4295-4306.2003
- Johann B, Nasim V, Marie M, et al. Altered splicing of the BIN1 muscle-specific exon in humans and dogs with highly progressive centronuclear myopathy. PLoS Genet 2013;9:e1003430. https://doi.org/10.1371/journal.pgen.1003430
- Fugier C, Klein AF, Hammer C, et al. Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat Med 2011;17:720-5. https://doi.org/10.1038/nm.2374
- Yuan M, Zhao YH, Wang YS, et al. The apoptosis induced by FAM105A through Bcl-2 family and caspase dependent pathway. J Xiamen Univ 2011;50:1065-9.