• Title/Summary/Keyword: QRS 파형

Search Result 23, Processing Time 0.02 seconds

Development of Signal Detection Methods for ECG (Electrocardiogram) based u-Healthcare Systems (심전도기반 u-Healthcare 시스템을 위한 파형추출 방법)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.6
    • /
    • pp.18-26
    • /
    • 2009
  • In this paper, we proposed multipurpose signal detection methods for ECG (electrocardiogram) based u-healthcare systems. For ECG based u-healthcare system, QRS signal extraction for cardiovascular disease diagnosis is essential. Also, for security and convenience reasons, it is desirable if u-healthcare system support biometric identification directly from user's bio-signal such as ECG for this case. For this, from Lead II signal, we developed QRS signal detection method and also, we developed signal extraction method for biometric identification using Lead II signal which is relatively robust from signal alteration by aging and diseases. For QRS signal detection capability from Lead II signal, ECG signals from MIT-BIH database are used and it showed 99.36% of accuracy and 99.68% of sensitivity. Also, to show the performance of signal extraction capability for biometric diagnosis purpose, Lead III signals are measured after drinking, smoking, or exercise to consider various monitoring conditions and it showed 99.92% of accuracy and 99.97% of sensitivity.

A Digital Filter for the Qrs Complex Detection Based-on Microcomputer (마이크로 컴퓨터를 이용한 QRS파형 검출용 디지탈필터)

  • 신건수
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.173-182
    • /
    • 1984
  • This paper represents a algorithm which improves the some drawbacks in the past methods for detecting QRS Complex waves. This proposed algorithm is very useful to detect correctly QRS Complex not only in a normal ECG, but in the abnormal ECG such as contaminating the noise with high amplitude, the existence of sharp T wave, and abrupt stepwise fluctuation of the base line.

  • PDF

QRS classification for automated ECG diagnosis (심전도 자동 진단을 위한 QRS 파형의 분류)

  • Jun, D.G.;Yeom, H.J.;Yoon, H.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.410-413
    • /
    • 1997
  • The most important wave set in ECG is the QRS complex. Automatic classification of the QRS complex is very useful in the diagnosis of cardiac dysfunction. Also, diagnosis is influenced by selection of dominant beat. In this paper, we propose simple algorithm for QRS detection. And we determine correlation between significan attributes of QRS complexs. We evaluated the efficiency of proposed method with the CSE database.

  • PDF

A New QRS Detection Algorithm Using Index Function Based on Resonance Theory (Resonace theory에 기반을 둔 index function을 통한 새로운 QRS 검출 알고리즘)

  • Lee, Jeon;Yoon, Hyung-Ro;Lee, Kyung-Joong
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.107-112
    • /
    • 2003
  • This paper describes a new simple QRS detection algorithm using index function based on resonance theory. The ECG signal can be modeled with several sinusoidal pulses and its first difference has some relations with the amplitude and frequency of sinusoidal pulse. Based on above fact, an index function, similar to the square of the imaginary part of a simple R-L-C circuit, was designed. A QRS complex is detected by applying the adaptive method to the response of index function. The algorithm showed a performance comparable to or higher than the other algorithms. Because it does not require any complicated preprocessing or postprocessing, it can be implemented in real time.

Noise Reduction and Characteristic Points Detectoin of ECG Signal using Wavelet Transforms (웨이브렛 변환을 이용한 ECG신호의 잡음제거와 특징점 검출)

  • 장두봉;이상민;신태민;이건기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.1
    • /
    • pp.11-17
    • /
    • 1998
  • One of the main techniques for diagnosing heart disease is by examining the electrocardiogram(ECG). Many studies on detecting the QRS complex, p, and T waves have been performed because meaningful information is contained in these parameters. However, the earlier detecting techniques can not effectively extract those parameters from the ECG that is severely contaminated by noise source. In this paper, we performed the extracting parameters from and recovering the ECG signal using wavelets transform that has recently been applying to various fields.

  • PDF

The classification of arrhythmia using similarity analysis between unit patterns at ECG signal (ECG 신호에서 단위패턴간 유사도분석을 이용한 부정맥 분류 알고리즘)

  • Bae, Junghyoun;Lim, Seung-Ju;Kim, Jeong-Ju;Park, Sung-Dae;Kim, Jeong-Do
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.1399-1402
    • /
    • 2011
  • 본 논문에서는 조기 심실 수축과 조기 심방 수축을 검출함에 있어 정밀한 QRS 구간의 폭, 정확한 P파와 T파의 크기 및 위치를 크게 요구하지 않고, 데이터의 가공과 복잡한 알고리즘의 사용에 의해 발생하는 ECG 데이터의 변형과 손실을 최소화할 수 있으며, 또한 개인차 때문에 발생할 수 있는 오류를 최소화하기 위한 알고리즘을 제안한다. 이를 위해 ECG 신호를 각각의 단위 파형으로 분리한 후, 정상 R-R 간격을 가지는 파형을 기준으로 기준파형을 만들어, 각 파형과 기준파형사이의 패턴 대조 및 유사도 분석을 통해 조기 심실수축과 조기심방수축을 검출할 수 있도록 하였다.

Detection of ECG Signal Waveform for Arrhythmia Classification (부정맥 분류를 위한 ECG 신호의 파형검출 알고리즘)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.453-456
    • /
    • 2005
  • 일반적으로 심전도는 심장계통의 질환을 판단할 때 사용된다. 이러한 심장질환의 이상 유무를 자동으로 진단하기 위해서는 QRS파형 검출을 필요로 하며, 이를 위하여 웨이블렛변환 방법이나 템플릿매칭, 룰 베이스 방법 등 여러 가지 방법들이 쓰이고 있으나, 심전도 신호가 표준화된 형태를 갖지 않는 경우는 검출 능력에 많은 한계를 갖고 있다. 본 논문은 파형의 베이스라인(baseline)을 기준으로 진폭 값에 절대치을 취하는 방법으로 파형의 R피크값을 검출하는 알고리즘을 제안한다. 결과를 검증하기 위해 MIT-BIH 데이타베이스에서 제공하는 데이터와 R피크값을 본 논문의 알고리즘으로 추출된 R피크값과 비교한 결과 96.7%의 검출률을 보였다.

  • PDF

Study on Noise Reduction of ECG Signal using Wavelets Transform (심전도신호의 잡음제거를 위한 웨이브렛변환의 적용에 관한 연구)

  • Chang, Doo-Bong;Lee, Sang-Min;Shin, Tae-Min;Lee, Gun-Ki
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.39-46
    • /
    • 1998
  • One of the main techniques for diagnosing heart disease is by examining the electrocardiogram(ECG). Many studies on detecting the QRS complex, P, and T waves have been performed because meaningful information is contained in these parameters. However, the earlier detection techniques can not effectively extract those parameters from the ECG that is severely contaminated by noise source. In this paper, we performed the extracting parameters from and recovering the ECG signal using wavelets transform that has recently been applying to various fields.

  • PDF

Arrhythmia Classification based on Binary Coding using QRS Feature Variability (QRS 특징점 변화에 따른 바이너리 코딩 기반의 부정맥 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1947-1954
    • /
    • 2013
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. But it is difficult to detect the P and T wave signal because of person's individual difference. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extrating minimal feature. In this paper, we propose arrhythmia detection based on binary coding using QRS feature varibility. For this purpose, we detected R wave, RR interval, QRS width from noise-free ECG signal through the preprocessing method. Also, we classified arrhythmia in realtime by converting threshold variability of feature to binary code. PVC, PAC, Normal, BBB, Paced beat classification is evaluated by using 39 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 97.18%, 94.14%, 99.83%, 92.77%, 97.48% in PVC, PAC, Normal, BBB, Paced beat classification.

Classification of Premature Atrial Contraction using Feature of ECG Signal based on Error Back-Propagation (오류 역전파 기반 ECG 특징을 이용한 심방조기수축(PAC) 분류)

  • Jeon, EunKwang;Nam, Yunyoung;Lee, Hwa-Min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.669-672
    • /
    • 2017
  • 최근 한국인의 주요 사망원인 중 하나로 부정맥이 부각되고 있다. 심방조기수축(PAC:Premature Atrial Contraction)은 심방이 동방결절의 명령이 있기 전에 수축해 버리는 것이다. 심방조기수축은 일시적으로 유발하였다 사라지곤 할 수 있기 때문에 심한 증상이 없다면 생명에 위협을 가하진 않지만 반대의 경우에는 위험할 수 있다. 따라서 비정상적인 심장 박동이 발생하면 이를 검출하여 조기에 부정맥을 진단할 수 있는 방법이 필요하다. 이를 위해 대상의 ECG 신호로부터 QRS패턴에 해당하는 특징들을 추출하였고 특징들을 이용하여 심방조기수축 파형을 분류한다. 오류 역전파 기반으로 특징들을 훈련하며 가중치와 바이어스값을 구한뒤 이를 이용하여 정상파형과 심방조기수축 파형을 분류한다.