Journal of the Institute of Electronics Engineers of Korea CI
/
v.46
no.6
/
pp.18-26
/
2009
In this paper, we proposed multipurpose signal detection methods for ECG (electrocardiogram) based u-healthcare systems. For ECG based u-healthcare system, QRS signal extraction for cardiovascular disease diagnosis is essential. Also, for security and convenience reasons, it is desirable if u-healthcare system support biometric identification directly from user's bio-signal such as ECG for this case. For this, from Lead II signal, we developed QRS signal detection method and also, we developed signal extraction method for biometric identification using Lead II signal which is relatively robust from signal alteration by aging and diseases. For QRS signal detection capability from Lead II signal, ECG signals from MIT-BIH database are used and it showed 99.36% of accuracy and 99.68% of sensitivity. Also, to show the performance of signal extraction capability for biometric diagnosis purpose, Lead III signals are measured after drinking, smoking, or exercise to consider various monitoring conditions and it showed 99.92% of accuracy and 99.97% of sensitivity.
This paper represents a algorithm which improves the some drawbacks in the past methods for detecting QRS Complex waves. This proposed algorithm is very useful to detect correctly QRS Complex not only in a normal ECG, but in the abnormal ECG such as contaminating the noise with high amplitude, the existence of sharp T wave, and abrupt stepwise fluctuation of the base line.
The most important wave set in ECG is the QRS complex. Automatic classification of the QRS complex is very useful in the diagnosis of cardiac dysfunction. Also, diagnosis is influenced by selection of dominant beat. In this paper, we propose simple algorithm for QRS detection. And we determine correlation between significan attributes of QRS complexs. We evaluated the efficiency of proposed method with the CSE database.
This paper describes a new simple QRS detection algorithm using index function based on resonance theory. The ECG signal can be modeled with several sinusoidal pulses and its first difference has some relations with the amplitude and frequency of sinusoidal pulse. Based on above fact, an index function, similar to the square of the imaginary part of a simple R-L-C circuit, was designed. A QRS complex is detected by applying the adaptive method to the response of index function. The algorithm showed a performance comparable to or higher than the other algorithms. Because it does not require any complicated preprocessing or postprocessing, it can be implemented in real time.
Journal of the Korea Institute of Information and Communication Engineering
/
v.2
no.1
/
pp.11-17
/
1998
One of the main techniques for diagnosing heart disease is by examining the electrocardiogram(ECG). Many studies on detecting the QRS complex, p, and T waves have been performed because meaningful information is contained in these parameters. However, the earlier detecting techniques can not effectively extract those parameters from the ECG that is severely contaminated by noise source. In this paper, we performed the extracting parameters from and recovering the ECG signal using wavelets transform that has recently been applying to various fields.
Proceedings of the Korea Information Processing Society Conference
/
2011.11a
/
pp.1399-1402
/
2011
본 논문에서는 조기 심실 수축과 조기 심방 수축을 검출함에 있어 정밀한 QRS 구간의 폭, 정확한 P파와 T파의 크기 및 위치를 크게 요구하지 않고, 데이터의 가공과 복잡한 알고리즘의 사용에 의해 발생하는 ECG 데이터의 변형과 손실을 최소화할 수 있으며, 또한 개인차 때문에 발생할 수 있는 오류를 최소화하기 위한 알고리즘을 제안한다. 이를 위해 ECG 신호를 각각의 단위 파형으로 분리한 후, 정상 R-R 간격을 가지는 파형을 기준으로 기준파형을 만들어, 각 파형과 기준파형사이의 패턴 대조 및 유사도 분석을 통해 조기 심실수축과 조기심방수축을 검출할 수 있도록 하였다.
일반적으로 심전도는 심장계통의 질환을 판단할 때 사용된다. 이러한 심장질환의 이상 유무를 자동으로 진단하기 위해서는 QRS파형 검출을 필요로 하며, 이를 위하여 웨이블렛변환 방법이나 템플릿매칭, 룰 베이스 방법 등 여러 가지 방법들이 쓰이고 있으나, 심전도 신호가 표준화된 형태를 갖지 않는 경우는 검출 능력에 많은 한계를 갖고 있다. 본 논문은 파형의 베이스라인(baseline)을 기준으로 진폭 값에 절대치을 취하는 방법으로 파형의 R피크값을 검출하는 알고리즘을 제안한다. 결과를 검증하기 위해 MIT-BIH 데이타베이스에서 제공하는 데이터와 R피크값을 본 논문의 알고리즘으로 추출된 R피크값과 비교한 결과 96.7%의 검출률을 보였다.
Journal of the Korean Institute of Telematics and Electronics S
/
v.35S
no.8
/
pp.39-46
/
1998
One of the main techniques for diagnosing heart disease is by examining the electrocardiogram(ECG). Many studies on detecting the QRS complex, P, and T waves have been performed because meaningful information is contained in these parameters. However, the earlier detection techniques can not effectively extract those parameters from the ECG that is severely contaminated by noise source. In this paper, we performed the extracting parameters from and recovering the ECG signal using wavelets transform that has recently been applying to various fields.
Journal of the Korea Institute of Information and Communication Engineering
/
v.17
no.8
/
pp.1947-1954
/
2013
Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. But it is difficult to detect the P and T wave signal because of person's individual difference. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extrating minimal feature. In this paper, we propose arrhythmia detection based on binary coding using QRS feature varibility. For this purpose, we detected R wave, RR interval, QRS width from noise-free ECG signal through the preprocessing method. Also, we classified arrhythmia in realtime by converting threshold variability of feature to binary code. PVC, PAC, Normal, BBB, Paced beat classification is evaluated by using 39 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 97.18%, 94.14%, 99.83%, 92.77%, 97.48% in PVC, PAC, Normal, BBB, Paced beat classification.
Proceedings of the Korea Information Processing Society Conference
/
2017.04a
/
pp.669-672
/
2017
최근 한국인의 주요 사망원인 중 하나로 부정맥이 부각되고 있다. 심방조기수축(PAC:Premature Atrial Contraction)은 심방이 동방결절의 명령이 있기 전에 수축해 버리는 것이다. 심방조기수축은 일시적으로 유발하였다 사라지곤 할 수 있기 때문에 심한 증상이 없다면 생명에 위협을 가하진 않지만 반대의 경우에는 위험할 수 있다. 따라서 비정상적인 심장 박동이 발생하면 이를 검출하여 조기에 부정맥을 진단할 수 있는 방법이 필요하다. 이를 위해 대상의 ECG 신호로부터 QRS패턴에 해당하는 특징들을 추출하였고 특징들을 이용하여 심방조기수축 파형을 분류한다. 오류 역전파 기반으로 특징들을 훈련하며 가중치와 바이어스값을 구한뒤 이를 이용하여 정상파형과 심방조기수축 파형을 분류한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.