• Title/Summary/Keyword: QRC

Search Result 12, Processing Time 0.022 seconds

A Single-Stage Power Factor Correction Converter far $90-265V_{rms}$ Line Applications ($90-265V_{rms}$ 입력범위를 갖는 단일전력단 역률개선 컨버터)

  • 이준영;박희정;구관본;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.508-514
    • /
    • 2000
  • A single-stage power factor correction AC/DC converter with a simple link voltage suppressing circuit (LVSC) for the universal line application is proposed. Using this simple circuit, a low link voltage can be realized without deadbands at line zero-crossings. The proposed converter is analyzed and a prototype converter with 5V, 12A output is implemented to verify the performance. The experimental results show that the link voltage stress and efficiency are about 447V and 81%, respectively.

  • PDF

A Study on Loss Analysis of ZVT-PWM Boost Converter using Quasi-Resonant Technique (유사공진 기술을 이용한 ZVT-PWM Boost 컨버터의 손실분석에 관한 연구)

  • 김정래;박경수;성원기;김춘삼
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 2001
  • Recently, DC-DC converters significantly increase the total losses as rising switching frequency. Trnditional soft switching technique for reducing switching losses even increase voltage/Clment stress of switch In this paper, Resonant circuit for soft switching is connected in parallel with power stage and only operates just before tum-on of the main sWItch. Therefore, ills doesn't affect the total circuit QI'||'&'||'pound;ration. The object of tIns paper is to make the linearized equivalent loss mxleIs. and to analyze the total losses by experiment. ZVT-PWlvI converter designed with 170-260[V] input, 400[V] 5[A] output, and 100[kHz] switching frequency is tested respectively with 500[W], 1[kW], 1.5[kW], and 2[kW] loads. The total losses in input 220[V], 2[kW] load are analyzed by usirm the linearized equivalent loss models.

  • PDF