• 제목/요약/키워드: QF rings

검색결과 5건 처리시간 0.017초

A REMARK ON QF RINGS

  • Feng, Feng;Shen, Liang
    • 대한수학회보
    • /
    • 제56권1호
    • /
    • pp.179-186
    • /
    • 2019
  • This article mainly concentrates on the open question whether a right self-injective ring R is necessary QF if $R/S_l$ is left Goldie. It is answered affirmatively under the condition $S_l{\subseteq}S_r$, where $S_l$ and $S_r$ denote the left socle and right socle of R respectively. And the original condition "right self-injective" can be weakened to "right CS and right P-injective". It is also proved that a semiperfect, left and right mininjective ring R is QF if $S_r{\subseteq}^{ess}$ $R_R$ and $R/S_l$ is left Goldie.

π-Morphic Rings

  • Huang, Qinghe;Chen, Jianlong
    • Kyungpook Mathematical Journal
    • /
    • 제47권3호
    • /
    • pp.363-372
    • /
    • 2007
  • An element $a$ in a ring R is called left morphic if $$R/Ra{\simeq_-}1(a)$$. A ring is called left morphic if every element is left morphic. In this paper, an element $a$ in a ring R is called left ${\pi}$-morphic (resp. left G-morphic) if there exists a positive number $n$ such that $a^n$ (resp. $a^n{\neq}0$) is left morphic. A ring R is called left ${\pi}$-morphic (resp. left G-morphic) if every element is left ${\pi}$-morphic (resp. left G-morphic). The Morita invariance of left ${\pi}$-morphic (resp. left G-morphic) rings is discussed. Several relevant properties are proved. In particular, it is shown that a left Noetherian ring R with $M_4(R)$ left G-morphic or $M_2(R)$ left morphic is QF. Some known results of left morphic rings are extended to left G-morphic rings and left ${\pi}$-morphic rings.

  • PDF

A NOTE ON ARTINIAN LOCAL RINGS

  • Hu, Kui;Kim, Hwankoo;Zhou, Dechuan
    • 대한수학회보
    • /
    • 제59권5호
    • /
    • pp.1317-1325
    • /
    • 2022
  • In this note, we prove that an Artinian local ring is G-semisimple (resp., SG-semisimple, 2-SG-semisimple) if and only if its maximal ideal is G-projective (resp., SG-projective, 2-SG-projective). As a corollary, we obtain the global statement of the above. We also give some examples of local G-semisimple rings whose maximal ideals are n-generated for some positive integer n.