• Title/Summary/Keyword: QD)

Search Result 240, Processing Time 0.03 seconds

The wideband direct digital frequency synthesizer using the 2-Parallel QD-ROM (2-병렬 QD-ROM 방식을 이용한 광대역 직접 디지털 주파수 합성기)

  • Kim, Chong-Il;Hong, Chan-Ki
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.291-297
    • /
    • 2011
  • In this paper, the differential quantized method and the parallel method to reduce the size of ROM in the direct digital frequency synthesizer(DDFS) is proposed And we design the DDFS by FPGA The new ROM compression method can reduce the ROM size by using the two ROM. The quantized value of sine is saved by the quantized-ROM(Q-ROM) and the differential ROM(D-ROM). Also we design the phase-to-sine converter using the phase accumulator of parallel type for generating the high frequency. So the total size of the ROM in the proposed DDFS is significantly reduced compared to the original ROM The ROM compression ratio of 67.5% is achieved by this method. Also, the power consumption is decreased according to the ROM size reduction and we can design the DDFS generating the high frequency.

The research of utility and relation on the dementia rating test (치매단계평가검사의 유용성과 상관성에 대한 임상연구;청주 지역사회 치매환자를 중심으로)

  • Choi, Kang-wook;Lim, Jung-wha;Jung, In-chul;Lee, Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.17 no.3
    • /
    • pp.11-19
    • /
    • 2006
  • Objective : This study was to investigate the utility and relation of dementia rating test(K-DRS and IADL, NPI-Q(symptom), NPI-Q(suffering), CCDR, SDS Method : For this study, we carried out dementia assessment examination of 34 patients with memory disturbance who have come to Cheongju oriental hospital of Daejeon university from April 2005 to February 2006. This study classified the patients as none-dementia(ND), questionable dementia(QD), and dementia(DA) groups and analyzed the result of examination. Results: 1. K-DRS and SDS, K-DRS and SDS, NPI-Q(symptom) and NPI-Q(suffering), NPI-Q(symptom) and CCDR showed clear correlations statistically each other. 2. K-DRS scores showed the significant differences from that of ND and the other groups ; attention and conceptualization showed the significant differences between ND and DA, management and memorization showed the significant differences between DA and the other groups. 3. IADL scores showed the significant differences from that of DA and the other groups, NPI-Q(symptom) scores showed the significant differences between QD and DA, NPI-Q(suffering) scores showed no differences among all groups. 4. CCDR scores showed the significant differences from that of DA and the other groups, SDS scores showed the significant differences between ND and DA 5. MMSE- K and K-DRS showed strong correlations statistically each other. Conclusion : The study results suggest that dementia rating tests is useful to esteem the dementia and the dementia rating tests have strong corelations each other. We use the above mentioned tests for correct diagnosis.

  • PDF

Energy-band model on photoresponse transitions in biased asymmetric dot-in-double-quantum-well infrared detector

  • Sin, Hyeon-Uk;Choe, Jeong-U;Kim, Jun-O;Lee, Sang-Jun;No, Sam-Gyu;Lee, Gyu-Seok;Krishna, S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.234-234
    • /
    • 2010
  • The PR transitions in asymmetric dot-in-double-quantum-well (DdWELL) photodetector is identified by bias-dependent spectral behaviors. Discrete n-i-n infrared photodetectors were fabricated on a 30-period asymmetric InAs-QD/[InGaAs/GaAs]/AlGaAs DdWELL wafer that was prepared by MBE technique. A 2.0-monolayer (ML) InAs QD ensemble was embedded in upper combined well of InGaAs/GaAs and each stack is separated by a 50-nm AlGaAs barrier. Each pixel has circular aperture of 300 um in diameter, and the mesa cell ($410{\times}410\;{\mu}m^2$) was defined by shallow etching. PR measurements were performed in the spectral range of $3{\sim}13\;{\mu}m$ (~ 100-400 meV) by using a Fourier-transform infrared (FTIR) spectrometer and a low-noise preamplifier. The asymmetric photodetector exhibits unique transition behaviors that near-/far-infrared (NIR/FIR) photoresponse (PR) bands are blue/red shifted by the electric field, contrasted to mid-infrared (MIR) with no dependence. In addition, the MIR-FIR dual-band spectra change into single-band feature by the polarity. A four-level energy band model is proposed for the transition scheme, and the field dependence of FIR bands numerically calculated by a simplified DdWELL structure is in good agreement with that of the PR spectra. The wavelength shift by the field strength and the spectral change by the polarity are discussed on the basis of four-level transition.

  • PDF

Selective Effects of Curcumin on CdSe/ZnS Quantum-dot-induced Phototoxicity Using UVA Irradiation in Normal Human Lymphocytes and Leukemia Cells

  • Goo, Soomin;Choi, Young Joo;Lee, Younghyun;Lee, Sunyeong;Chung, Hai Won
    • Toxicological Research
    • /
    • v.29 no.1
    • /
    • pp.35-42
    • /
    • 2013
  • Quantum dots (QDs) have received considerable attention due to their potential role in photosensitization during photodynamic therapy. Although QDS are attractive nanomaterials due to their novel and unique physicochemical properties, concerns about their toxicity remain. We suggest a combination strategy, CdSe/ZnS QDs together with curcumin, a natural yellow pigment from turmeric, to reduce QD-induced cytotoxicity. The aim of this study was to explore a potentially effective cancer treatment: co-exposure of HL-60 cells and human normal lymphocytes to CdSe/ZnS QDs and curcumin. Cell viability, apoptosis, reactive oxygen species (ROS) generation, and DNA damage induced by QDs and/or curcumin with or without ultraviolet A (UVA) irradiation were evaluated in both HL-60 cells and normal lymphocytes. In HL-60 cells, cell death, apoptosis, ROS generation, and single/double DNA strand breaks induced by QDs were enhanced by treatment with curcumin and UVA irradiation. The protective effects of curcumin on cell viability, apoptosis, and ROS generation were observed in normal lymphocytes, but not leukemia cells. These results demonstrated that treatment with QD combined with curcumin increased cell death in HL-60 cells, which was mediated by ROS generation. However, curcumin acted as an antioxidant in cultured human normal lymphocytes.

Electrically Driven Quantum Dot/wire/well Hybrid Light-emitting Diodes via GaN Nano-sized Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Kim, Ryeo-Hwa;Go, Seok-Min;Gwon, Bong-Jun;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.47-47
    • /
    • 2011
  • There have been numerous efforts to enhance the efficiency of light-emitting diodes (LEDs) by using low dimensional structures such as quantum dots (QDs), wire (QWRs), and wells (QWs). We demonstrate QD/QWR/QW hybrid structured LEDs by using nano-scaled pyramid structures of GaN with ~260 nm height. Photoluminescence (PL) showed three multi-peak spectra centered at around 535 nm, 600 nm, 665 nm for QWs, QWRs, and QDs, respectively. The QD emission survived at room temperature due to carrier localization, whereas the QW emission diminished from 10 K to 300 K. We confirmed that hybrid LEDs had zero-, one-, and two-dimensional behavior from a temperature-dependent time-resolved PL study. The radiative lifetime of the QDs was nearly constant over the temperature, while that of the QWs increased with increasing temperature, due to low dimensional behavior. Cathodoluminescence revealed spatial distributions of InGaN QDs, QWRs, and QWs on the vertices, edges, and sidewalls, respectively. We investigated the blue-shifted electroluminescence with increasing current due to the band-filling effect. The hybrid LEDs provided broad-band spectra with high internal quantum efficiency, and color-tunability for visible light-emitting sources.

  • PDF

Plasmonic Nanosheet towards Biosensing Applications

  • Tamada, Kaoru
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.105-106
    • /
    • 2013
  • Surface plasmon resonance (SPR) is classified into the propagating surface plasmon (PSP) excited on flat metal surfaces and the local surface plasmon (LSP) excited by metalnanoparticles. It is known that fluorescence signals are enhanced by these two SPR-fields.On the other hand, fluorescence is quenched by the energy transfer to metal (FRET). Bothphenomena are controlled by the distance between dyes and metals, and the degree offluorescence enhancement is determined by the correlation. In this study, we determined thecondition to achieve the maximum fluorescence enhancement by adjusting the distance of ametal nanoparticle 2D sheet and a quantum dots 2D sheet by the use of $SiO_2$ spacer layers. The 2D sheets consisting of myristate-capped Ag nanoparticles (AgMy nanosheets) wereprepared at the air-water interface and transferred onto hydrophobized gold thin films basedon the Langmuir-Schaefer (LS) method [1]. The $SiO_2$ sputtered films with different thickness (0~100 nm) were deposited on the AgMy nanosheet as an insulator. TOPO-cappedCdSe/CdZnS/ZnS quantum dots (QDs, ${\lambda}Ex=638nm$) [2] were also transferred onto the $SiO_2$ films by the LS method. The layered structure is schematically shown in Fig. 1. The result of fluorescence measurement is shown in Fig. 2. Without the $SiO_2$ layer, the fluorescence intensity of the layered QD film was lower than that of the original QDs layer, i.e., the quenching by FRET was predominant. When the $SiO_2$ thickness was increased, the fluorescence intensity of the layered QD film was higher than that of the original QDs layer, i.e., the SPR enhancement was predominant. The fluorescence intensity was maximal at the $SiO_2$ thickness of 20 nm, particularly when the LSPR absorption wavelength (${\lambda}=480nm$) was utilized for the excitation. This plasmonic nanosheet can be integrated intogreen or bio-devices as the creation point ofenhanced LSPR field.

  • PDF

Fabrication of Photo Sensitive Graphene Transistor Using Quantum Dot Coated Nano-Porous Graphene

  • ;Lee, Jae-Hyeon;Choe, Sun-Hyeong;Im, Se-Yun;Lee, Jong-Un;Bae, Yun-Gyeong;Hwang, Jong-Seung;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.658-658
    • /
    • 2013
  • Graphene is an attractive material for various device applications due to great electrical properties and chemical properties. However, lack of band gap is significant hurdle of graphene for future electrical device applications. In the past few years, several methods have been attempted to open and tune a band gap of graphene. For example, researchers try to fabricate graphene nanoribbon (GNR) using various templates or unzip the carbon nanotubes itself. However, these methods generate small driving currents or transconductances because of the large amount of scattering source at edge of GNRs. At 2009, Bai et al. introduced graphene nanomesh (GNM) structures which can open the band gap of large area graphene at room temperature with high current. However, this method is complex and only small area is possible. For practical applications, it needs more simple and large scale process. Herein, we introduce a photosensitive graphene device fabrication using CdSe QD coated nano-porous graphene (NPG). In our experiment, NPG was fabricated by thin film anodic aluminum oxide (AAO) film as an etching mask. First of all, we transfer the AAO on the graphene. And then, we etch the graphene using O2 reactive ion etching (RIE). Finally, we fabricate graphene device thorough photolithography process. We can control the length of NPG neckwidth from AAO pore widening time and RIE etching time. And we can increase size of NPG as large as 2 $cm^2$. Thin CdSe QD layer was deposited by spin coatingprocess. We carried out NPG structure by using field emission scanning electron microscopy (FE-SEM). And device measurements were done by Keithley 4200 SCS with 532 nm laser beam (5 mW) irradiation.

  • PDF

Development of an Open Sandwich Fluoroimmunoassay Based on FRET (FRET에 기반한 Open Sandwich Fluoroimmunoassay)

  • Wei, Quande;Lee, Moon-Kwon;Seong, Gi-Hun;Choo, Jae-Bum;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.426-432
    • /
    • 2007
  • We have developed a sensitive, one-step, homogeneous open sandwich fluoroimmunoassay (OsFIA) based on fluorescence resonance energy transfer (FRET) and luminescent semiconductor quantum dots (QDs). In this FRET assay, estrogen receptor-$\beta$ (ER-$\beta$) antigen was incubated with QD-labeled anti-ER-$\beta$ monoclonal antibody and AF (Alexa Fluoro)-labeled anti-ER polyclonal antibody for 30 minutes, followed by FRET measurement. The dye separation distance was estimated to be between $80\sim90\;{\AA}$. The present method is rapid, simple and highly sensitive, and did not require the bound/free reagent separation steps and solid-phase carriers. A concentration as low as 0.05 nM (2.65 ng/ml) receptor was detected with linearity ($R^2$ > 0.990). In addition, the assay was performed with commercial antibodies. This assay provides a convenient alternative to conventional, laborious sandwich immunoassays.

Effect of the Integrated STEM Project Learning Themed 'Lighting of Quantum Dot Solution' on Science High-School Small-Group Students' Problem Solving and Scientific Attitude ('양자점 용액의 발광'을 주제로 한 융합형 STEM 프로젝트 학습이 과학고등학교 소집단 학생들의 문제해결력과 과학적 태도에 미치는 효과)

  • Yi, Seung-Woo;Kim, Youngmin
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1356-1363
    • /
    • 2018
  • The purpose of this study was to investigate science high-school students' creativity and scientific attitude when an integrated science, technology, engineering and mathematics (STEM) project themed 'lighting of quantum dot solution' was applied to them. The subjects were a one team composed of 3 students in the 11th grade desiring to participate in the Korea Science Exhibition. They began with a scientific inquiry related to the physical properties of the QD solution and then gradually showed the process of expansion of their ideas into the integration of engineering, technology, and mathematics. Also, during the process, they showed problem solving ability and scientific attitudes, such as cooperation, endurance, and satisfaction of accomplishment.

SOME Lq INEQUALITIES FOR POLYNOMIAL

  • Chanam, Barchand;Reingachan, N.;Devi, Khangembam Babina;Devi, Maisnam Triveni;Krishnadas, Kshetrimayum
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.331-345
    • /
    • 2021
  • Let p(z)be a polynomial of degree n. Then Bernstein's inequality [12,18] is $${\max\limits_{{\mid}z{\mid}=1}}\;{\mid}p^{\prime}(z){\mid}\;{\leq}\;n\;{\max_{{\mid}z{\mid}=1}{\mid}(z){\mid}}$$. For q > 0, we denote $${\parallel}p{\parallel}_q=\{{\frac{1}{2{\pi}}}{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{0}}^{2{\pi}}}\;{\mid}p(e^{i{\theta}}){\mid}^qd{\theta}\}^{\frac{1}{q}}$$, and a well-known fact from analysis [17] gives $${{\lim_{q{\rightarrow}{{\infty}}}}\{{\frac{1}{2{\pi}}}{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{0}}^{2{\pi}}}\;{\mid}p(e^{i{\theta}}){\mid}^qd{\theta}\}^{\frac{1}{q}}={\max\limits_{{\mid}z{\mid}=1}}\;{\mid}p(z){\mid}$$. Above Bernstein's inequality was extended by Zygmund [19] into Lq norm by proving ║p'║q ≤ n║p║q, q ≥ 1. Let p(z) = a0 + ∑n𝜈=𝜇 a𝜈z𝜈, 1 ≤ 𝜇 ≤ n, be a polynomial of degree n having no zero in |z| < k, k ≥ 1. Then for 0 < r ≤ R ≤ k, Aziz and Zargar [4] proved $${\max\limits_{{\mid}z{\mid}=R}}\;{\mid}p^{\prime}(z){\mid}\;{\leq}\;{\frac{nR^{{\mu}-1}(R^{\mu}+k^{\mu})^{{\frac{n}{\mu}}-1}}{(r^{\mu}+k^{\mu})^{\frac{n}{\mu}}}\;{\max\limits_{{\mid}z{\mid}=r}}\;{\mid}p(z){\mid}}$$. In this paper, we obtain the Lq version of the above inequality for q > 0. Further, we extend a result of Aziz and Shah [3] into Lq analogue for q > 0. Our results not only extend some known polynomial inequalities, but also reduce to some interesting results as particular cases.