The wideband direct digital frequency synthesizer using the 2-Parallel QD-ROM

2-병렬 QD-ROM 방식을 이용한 광대역 직접 디지털 주파수 합성기

  • Received : 2011.09.28
  • Accepted : 2011.11.01
  • Published : 2011.10.30

Abstract

In this paper, the differential quantized method and the parallel method to reduce the size of ROM in the direct digital frequency synthesizer(DDFS) is proposed And we design the DDFS by FPGA The new ROM compression method can reduce the ROM size by using the two ROM. The quantized value of sine is saved by the quantized-ROM(Q-ROM) and the differential ROM(D-ROM). Also we design the phase-to-sine converter using the phase accumulator of parallel type for generating the high frequency. So the total size of the ROM in the proposed DDFS is significantly reduced compared to the original ROM The ROM compression ratio of 67.5% is achieved by this method. Also, the power consumption is decreased according to the ROM size reduction and we can design the DDFS generating the high frequency.

본 논문에서는 DPCM 방식의 차동 양자화 기술 및 병렬 기법을 응용하여 새로운 ROM 압축방식을 사용한 고속의 저 전력 직접디지털 주파수 합성기를 제안하고 FPGA를 사용하여 설계 및 제작한다. ROM 크기를 줄이기 위해 사인파를 표본화하여 양자화된 값을 양자화 ROM(Quantized ROM : Q-ROM)에 저장하고 각 표본화 사이클 차동 양자화하여 차동 ROM(Differential ROM : D-ROM)에 저장한다. 또한 낮은 클럭에서 동작하는 위상 누적기를 병렬로 2개 연결하여 높은 주파수를 생성하는 위상-사인 변환기를 설계 및 제작한다. 이를 사용함으로써 67.5%의 ROM 사이즈를 감소시킬 수 있고 ROM의 크기를 줄여 전력 소모를 줄일 수 있을 뿐만 아니라 고속의 직접 디지털 주파수 합성기를 설계 및 제작할 수 있다.

Keywords

References

  1. D. A. Sunderland, R. A. Strauch, S. S. Wharfield, H. T. Peterson, and C. R. Cole, "CMOS/SOS frequency synthesizer LSI circuit for spread spectrum communications", IEEE JSSC, pp. 497-05, Aug. 1984.
  2. H. T. Nicholas, H. Samueli, and B. Kim, "The optimization of direct digital frequency synthesizer performance in the presence of finite word length effects", in 42nd Auun. Frequency Control Symp, pp. 356-63, 1988.
  3. H. T. Nicholas III and H. Samueli, "A 150-MHz direct digital frequency synthesizer in 1.25-m CMOS with -90dBc spurious performance," IEEE J. Solid-State Circuits, vol. 26, no. 12, pp. 1959 - 1969, Dec. 1991. https://doi.org/10.1109/4.104190
  4. V.F. Kroupa, Direct Digital Frequency Synthesizers. New York: IEEE Press, 1999.
  5. Byung-Do Yang, Jang-Hong Choi, Seon-Ho Han, Lee-Sup Kim, and Hyun-Kyu Yu, "An 800-MHz Low-Power Direct Digital Frequency Synthesizer With an On-Chip D/A Converter," IEEE J. of Solid-State Circuits, vol. 39, no. 5, pp. 761-774, May 2004. https://doi.org/10.1109/JSSC.2004.826323
  6. J. Tierney, C. M. Radre, and B. Gold, "A Digital Frequency Synthesizer," IEEE Transactions on Audio and Electroacoustics, vol. AU-19, pp. 48-57. March 1971.
  7. Ferrel G. StremIer, Introduction to Comnnmication Systems 3rd Edition, Addison-Wesley Publishing Company, 1990.
  8. Avanindra Madisetti, Alan Y Kwentus, and Alan NWilson, "A 100MHz, 16-b Direct Digital Frequency Synthesizer with a 100dBc Spurious Free Dynamic Range," IEEE J. of Solid State Circuits , vol. 34, no. 8, pp. 1034-1043, August, 1999. https://doi.org/10.1109/4.777100
  9. L. A. Weaver, "High Resolution Phase to Sine Amplitude Conversion", U.S. Patent 4905177, February 1990
  10. S. Mortezapour and E. K. F. Lee, "Design of Low-Power ROM-Less Direct Digital Frequency Synthesizer Using Nonlinear Digital-to-Analog Converter," IEEE J. Solid-State Circuits, vol. 34, no. 10, pp.1350-1359, Oct. 1999. https://doi.org/10.1109/4.792601
  11. J. Volder, "The CORDlC trigonometric computing technique," IEEE Trans. Computers, vol. EC-8, pp. 330-334, Sept. 1959.
  12. Y.H.Hu, "The Quantization Effects of the CORDlC Algorithm," IEEE Trans. on Signal Processing, vol. 40, no. 4, pp. 834-844, Apr. 1992. https://doi.org/10.1109/78.127956