• Title/Summary/Keyword: QA tool

Search Result 30, Processing Time 0.031 seconds

On-line Quality Assurance of Linear Accelerator with Electronic Portal Imaging System (전자포탈영상장치(EPID)를 이용한 선형가속기의 기하학적 QC/QA System)

  • Lee, Seok;Jang, Hye-Sook;Choi, Eun-Kyung;Kwon, Soo-Il;Lee, Byung-Yong
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.127-136
    • /
    • 1998
  • On-line geometrical quality assurance system has been developed using electronic portal imaging system(OQuE). EPID system is networked into Pentium PC in order to transmit the acquisited images to analysis PC. Geometrical QA parameters, including light-radiation field congruence, collimator rotation axis, and gantry rotation axis can be easily analyzed with the help of graphic user interface(GUI) software. Equipped with the EPID (Portal Vision, Varian, USA), geometrical quality assurance of a linear accelerator (CL/2100/CD, Varian, USA), which is networked into OQuE, was performed to evaluate this system. Light-radiation field congruence tests by center of gravity analysis shows 0.2~0.3mm differences for various field sizes. Collimator (or Gantry) rotation axis for various angles could be obtained by superposing 4 shots of angles. The radius of collimator rotation axis is measured to 0.2mm for upper jaw collimator, and 0.1mm for lower jaw. Acquisited images for various gantry angles were rotated according to the gantry angle and actual center of image point obtained from collimator axis test. The rotated images are superpositioned and analyzed as the same method as collimator rotation axis. The radius of gantry rotation axis is calculated 0.3mm for anterior/posterior direction (gantry 0$^{\circ}$ and 170$^{\circ}$) and 0.7mm for right/left direction(gantry 90$^{\circ}$ and 260$^{\circ}$). Image acquisition for data analysis is faster than conventional method and the results turn out to be excellent for the development goal and accurate within a milimeter range. The OQuE system is proven to be a good tool for the geometrical quality assurance of linear accelerator using EPID.

  • PDF

Development of an evaluation tool of quality of nursing care for gastrointestinal surgery patient (위.장관계 수술 환자간호의 질평가를 위한 도구개발)

  • Lee, Byeong-Suk;Park, Jeong-Ho;Jo, Hyeon
    • Quality Improvement in Health Care
    • /
    • v.4 no.2
    • /
    • pp.260-278
    • /
    • 1997
  • Background : Quality of professional nursing care is the most essential factor for survival and growth of nursing profession. Then, nursing professionals have responsibility for the evaluation of quality of professional nursing care. The purpose of this study was to develope an evaluation tool of nursing care for patients received gastrointestinal surgery with general anesthesia. This study was a primary work for the developement of a computer program for the evaluation of nursing care. Methods : This study was done through some consecutive steps. They were (1) Developement of items for the tool (2) Developement of an evaluation tool of nursing care quality for the G-I surgery patient (3) Test of reliability and validity of the tool. Two groups of experts and expert pannels who had much experience of the QA and the care of G-I surgery patients participated for developement of the items. 85 nursing records were used for the test of reliability and validity of the developed tool. The evaluation tools were developed with two types of scoring, norm-referenced tool and criterion-referenced tool. Results The system of items for tool was evaluation area evaluation item-indicator. There were 7evaluation areas which contained 32evaluation items which contained 7lindicators. Evaluation areas 1, 2, 3, 4 were for the evaluation of process and 5, 6, 7 were for the evaluation of outcome of nursing care for G-I surgery patient. For the test of interrator reliability, correlation coefficients of each scores of items and intragroup correlation coefficients were calculated. The average correlation coefficients between two rators were 0.65, 0.54 and the intragroup correlation coefficient were 0.99 and 1.00 by the types of scoring. The Cronbach alpha coefficients of the tools were 0.54 and 0.46 by the types of scoring. The average content validity index of the items was 0.95 from 4 pairs of experts. Because there were significant differences between some scores of quality of nursing care of 3 general hospitals regardless of the types of scoring, the tools could be thought to have some construct validity. And also, there were significant correlations between some scores of quality of nursing care and admission days and admission days after surgery regardless of the types of scoring, the tools could be thought to have predictive validity. Conclusion In this study, the evaluation tool of nursing care was developed for the very specified group of patient, G-I surgery patient. And the items were developed and tested by the experts of nursing practice. Because of these reasons, it was supposed that the tool could be used effectively in nursing pratice. And the procedures for the development and the test of the evaluation tool of nursing care in this study were supposed to be used for the developement of other tools.

  • PDF

Therapeutic Proton Beam Range Measurement with EBT3 Film and Comparison with Tool for Particle Simulation

  • Lee, Nuri;Kim, Chankyu;Song, Mi Hee;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.112-119
    • /
    • 2019
  • Purpose: The advantages of ocular proton therapy are that it spares the optic nerve and delivers the minimal dose to normal surrounding tissues. In this study, it developed a solid eye phantom that enabled us to perform quality assurance (QA) to verify the dose and beam range for passive single scattering proton therapy using a single phantom. For this purpose, a new solid eye phantom with a polymethyl-methacrylate (PMMA) wedge was developed using film dosimetry and an ionization chamber. Methods: The typical beam shape used for eye treatment is approximately 3 cm in diameter and the beam range is below 5 cm. Since proton therapy has a problem with beam range uncertainty due to differences in the stopping power of normal tissue, bone, air, etc, the beam range should be confirmed before treatment. A film can be placed on the slope of the phantom to evaluate the Spread-out Bragg Peak based on the water equivalent thickness value of PMMA on the film. In addition, an ionization chamber (Pin-point, PTW 31014) can be inserted into a hole in the phantom to measure the absolute dose. Results: The eye phantom was used for independent patient-specific QA. The differences in the output and beam range between the measurement and the planned treatment were less than 1.5% and 0.1 cm, respectively. Conclusions: An eye phantom was developed and the performance was successfully validated. The phantom can be employed to verify the output and beam range for ocular proton therapy.

Radiation Doses and Quality Assurance in Cone Beam CT(CBCT) (임상가를 위한 특집 4 - CBCT 검사법의 정도관리 및 선량)

  • Choi, Yong-Suk;Kim, Gyu-Tae;Hwang, Eui-Hwan
    • The Journal of the Korean dental association
    • /
    • v.52 no.3
    • /
    • pp.153-163
    • /
    • 2014
  • 3-dimensional information for anatomic stucture plays a role as integral part in clinical aspect of dental practice. CBCT(cone beam computed tomography) has been accepted as useful diagnostic tool offering Volume data and images for evaluating teeth and jaws in lower radiation dose than conventional CT. CBCT equipment is essential for the quality assurance of it to ensure continued satisfactory performance and result of adequate images. Dental practitioner and oral and maxillofacial radiologist should have a responsibility and critical thinking to deliver this technology to patients in a responsible way, so that diaganostic value is maximised and radiation doses kept as low as resonably achievable. CBCT imaging modality should be used only after a review of the patient's health and imaging history and the completion of a thorough clinical examination. Clinical guidelines are systematically developed statements to assist practitioner and patient decisions about appropriate health care for specific clinical circumstances Dental practitioners should prescribe CBCT imaging only when they expect that the diagnostic yield will benefit patient care, enhance patient safety or improve clinical outcomes significantly. Knowledge of patient dose is essential for clinicians who are making the decision regarding the justification of the exposure. There are some limitation in the measurement of patient dose in CBCT for the approval and adaptation of conventinal methodolgy in CT. It is also important to ensure that doses are optimised and in line with any national and international guidelines. The higher radiation doses of CBCT compared with conventional radiography, mean that high standards must be maintained. The Quality Assurance(QA) programme should entail surveys and checks that are performed according to a regular timetable. QA programme should be maintained by staff to ensure adherence to the programme and to raise its importance among staff.

Evaluation of the Utility of a Volumetric Modulated Arc Therapy Specific Patient Quality Assurance using Software-based Quality Assurance System (소프트웨어 기반 정도관리 시스템을 이용한 부피세기조절회전치료 환자 별 정도관리의 유용성 평가)

  • Kang, Dong-Jin;Jung, Jae-Yong;Shin, Young-Joo;Min, Jung-Whan;Kim, Yon-Lae;Kwon, Kyung-Tae
    • Journal of radiological science and technology
    • /
    • v.41 no.1
    • /
    • pp.39-45
    • /
    • 2018
  • The purpose of this study is to evaluate the usefulness of a software-based quality assurance system based on Volumetric Modulated Arc Therapy treatment plan. Evaluate treatment plan through the D VH analysis, PTV mean dose ($D_{mean}$) and PTV 95% dose($D_{95}$) compare the MFX based on original treatment plan, Average error rate was $0.9{\pm}0.6%$, $1.0{\pm}0.8%$, respectively. Measuring point dose using phantom and ion chamber, the average error rate between the ionization chamber and MFX was $0.9{\pm}0.7%$, $1.1{\pm}0.7%$ (high dose region), $1.1{\pm}0.9%$, $1.2{\pm}0.7%$ (low dose region). The average gamma though of MFX and $Delta^{4PT}$ is $98.7{\pm}1.2%$, $98.4{\pm}.3%$, respectively. Through this study, A software based QA system that simplifies hardware based QA procedures that involve a lot of time and effort. It can be used as a simple and useful tool in clinical practice.

Guideline on Acceptance Test and Commissioning of High-Precision External Radiation Therapy Equipment

  • Kim, Juhye;Shin, Dong Oh;Choi, Sang Hyoun;Min, Soonki;Kwon, Nahye;Jung, Unjung;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.123-136
    • /
    • 2018
  • The complex dose distribution and dose transfer characteristics of intensity-modulated radiotherapy increase the importance of precise beam data measurement and review in the acceptance inspection and preparation stages. In this study, we propose a process map for the introduction and installation of high-precision radiotherapy devices and present items and guidelines for risk management at the acceptance test procedure (ATP) and commissioning stages. Based on the ATP of the Varian and Elekta linear accelerators, the ATP items were checked step by step and compared with the quality assurance (QA) test items of the AAPM TG-142 described for the medical accelerator QA. Based on the commissioning procedure, dose quality control protocol, and mechanical quality control protocol presented at international conferences, step-by-step check items and commissioning guidelines were derived. The risk management items at each stage were (1) 21 ionization chamber performance test items and 9 electrometer, cable, and connector inspection items related to the dosimetry system; (2) 34 mechanical and dose-checking items during ATP, 22 multileaf collimator (MLC) items, and 36 imaging system items; and (3) 28 items in the measurement preparation stage and 32 items in the measurement stage after commissioning. Because the items presented in these guidelines are limited in terms of special treatment, items and practitioners can be modified to reflect the clinical needs of the institution. During the system installation, it is recommended that at least two clinically qualified medical physicists (CQMP) perform a double check in compliance with the two-person rule. We expect that this result will be useful as a radiation safety management tool that can prevent radiation accidents at each stage during the introduction of radiotherapy and the system installation process.

Feasibility on Statistical Process Control Analysis of Delivery Quality Assurance in Helical Tomotherapy (토모테라피에서 선량품질보증 분석을 위한 통계적공정관리의 타당성)

  • Kyung Hwan, Chang
    • Journal of radiological science and technology
    • /
    • v.45 no.6
    • /
    • pp.491-502
    • /
    • 2022
  • The purpose of this study was to retrospectively investigate the upper and lower control limits of treatment planning parameters using EBT film based delivery quality assurance (DQA) results and to analyze the results of statistical process control (SPC) in helical tomotherapy (HT). A total of 152 patients who passed or failed DQA results were retrospectively included in this study. Prostate (n = 66), rectal (n = 51), and large-field cancer patients, including lymph nodes (n = 35), were randomly selected. The absolute point dose difference (DD) and global gamma passing rate (GPR) were analyzed for all patients. Control charts were used to evaluate the upper and lower control limits (UCL and LCL) for all the assessed treatment planning parameters. Treatment planning parameters such as gantry period, leaf open time (LOT), pitch, field width, actual and planning modulation factor, treatment time, couch speed, and couch travel were analyzed to provide the optimal range using the DQA results. The classification and regression tree (CART) was used to predict the relative importance of variables in the DQA results from various treatment planning parameters. We confirmed that the proportion of patients with an LOT below 100 ms in the failure group was relatively higher than that in the passing group. SPC can detect QA failure prior to over dosimetric QA tolerance levels. The acceptable tolerance range of each planning parameter may assist in the prediction of DQA failures using the SPC tool in the future.

Development of a Quality Assurance Safety Assessment Database for Near Surface Radioactive Waste Disposal

  • Park J.W.;Kim C.L.;Park J.B.;Lee E.Y.;Lee Y.M.;Kang C.H.;Zhou W.;Kozak M.W.
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.556-565
    • /
    • 2003
  • A quality assurance safety assessment database, called QUARK (QUality Assurance Program for Radioactive Waste Management in Korea), has been developed to manage both analysis information and parameter database for safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility in Korea. QUARK is such a tool that serves QA purposes for managing safety assessment information properly and securely. In QUARK, the information is organized and linked to maximize the integrity of information and traceability. QUARK provides guidance to conduct safety assessment analysis, from scenario generation to result analysis, and provides a window to inspect and trace previous safety assessment analysis and parameter values. QUARK also provides default database for safety assessment staff who construct input data files using SAGE(Safety Assessment Groundwater Evaluation), a safety assessment computer code.

Feasibility of Two Dimensional Ion Chamber Array for a Linac Periodic Quality Assurance (선형가속기의 품질관리를 위한 2차원이온전리함배열의 유용성)

  • Lee, Jeong-Woo;Hong, Se-Mie;Park, Byung-Moon;Kang, Min-Young;Kim, You-Hyun;Suh, Tae-Suk
    • Journal of radiological science and technology
    • /
    • v.31 no.2
    • /
    • pp.183-188
    • /
    • 2008
  • Aim of this study is to investigate the feasibility of 2D ion chamber array as a substitute of the water phantom system in a periodic Linac QA. For the feasibility study, a commercial ion chamber matrix was used as a substitute of the water phantom in the measurement for a routine QA beam properties. The device used in this study was the I'm RT MatriXX (Wellhofer Dosimetrie, Germany). The MatriXX consists of a 1,020 vented ion chamber array, arranged in $24{\times}24\;cm^2$ matrix. Each ion chamber has a volume of $0.08\;cm^3$, spacing of 0.762 cm. We investigated dosimetric parameters such as dose symmetry, energy ($TPR_{20,10}$), and absolute dose for comparing with the water phantom data with a Farmer-type ionization chamber (FC65G, Wellhofer Dosimetrie, Germany). For the MatriXX measurements, we used the white polystyrene phantom (${\rho}:\;1.18\;g/cm^3$) and also considered the intrinsic layer (${\rho}:\;1.06\;g/cm^3$, t: 0.36 cm) of MatriXX to be equivalent to water depth. In the preliminary study of geometrical QA using MatriXX, the rotation axis of collimator and half beam junction test were included and compared with film measurements. Regarding the dosimetrical QA, the MatriXX has shown good agreements within ${\pm}1%$ compared to the water phantom measurements. In the geometrical test, the data from MatriXX were comparable with those from the films. In conclusion, the MatriXX is a good substitute for water phantom system and film measurements. In addition, the results indicate that the MatriXX as a cost-effective novel QA tool to reduce time and personnel power.

  • PDF

Applicability of Appropriateness Evaluation Protocol and Delay Tool (적절성 평가지침과 이유목록의 적용 가능성 평가)

  • Shin, Youngsoo;Kim, Yong-Ik;Kim, Chang-Yup;Kim, Yoon;Kim, Eun Gyung;Song, Yun Mi;Lee, Young Seong
    • Quality Improvement in Health Care
    • /
    • v.1 no.1
    • /
    • pp.96-108
    • /
    • 1994
  • Background: An appropriate use of hospital beds can improve productivity of hospital significantly. The authors' previous study revealed that approximately one third of Korean hospital bed days and one sixth of admissions were inappropriately used, when it was measured by Appropriateness Evaluation Protocol(AEP) and Delay Tool modified into Korean situation by the authors. This study aims to evaluate applicability of the instruments in a new hospital. More specifically the study aims to measure appropriateness of the instruments used by newly trained nurse reviewers at a new hospital setting. Methods: In order to evaluate applicability of these instruments, agreement rates of the scores recorded by newly trained nurse reviewers with by skilled nurse reviewer and also compared with the scores recorded by physician's implicit decision were assessed. Agreement rates were derived from concurrent application of AEP and Delay Tool to 52 admissions and 104 patient days from internal medicine, pediatrics, and general surgery of one university hospital. Overall agreement rate, specific nonacute agreement rate, and kappa statistics were used to indicate level of agreement. Results: Overall agreement rates on appropriateness between newly trained nurse reviewers and skilled nurse reviewer were 100% in admission and 98% in bed days. Overall agreement rates on reason for inappropriateness between newly trained nurse reviewers and skilled nurse reviewer were 96% in admission and 91% in bed days. Overall agreement rates between newly trained nurse reviewers and physician reviewer were 86% in admission and 87% in bed days. Conclusion: Results indicated that AEP and Delay Tool were applicable to a new hospital in detecting inappropriate utilization of beds and reasoning of the inappropriateness. These instruments could contribute to enhance efficiency of hospital use, through continuous monitoring of level of inappropriate hospital use at national or individual hospital level.

  • PDF