• Title/Summary/Keyword: Q21

Search Result 954, Processing Time 0.031 seconds

Loss of Heterozygosity on the Long Arm of Chromosome 21 in Non-Small Cell Lung Cancer (비소세포폐암에서 21q 이형체 소실)

  • Chai, Po-Hee;Bae, Nack-Cheon;Lee, Eung-Bae;Park, Jae-Yong;Kang, Kyung-Hee;Kim, Kyung-Rok;Bae, Moon-Seob;Cha, Seung-Ik;Chae, Sang-Chul;Kim, Chang-Ho;Jung, Tae-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.6
    • /
    • pp.668-675
    • /
    • 2001
  • Background : Non-smalll lung cancer(NSCLC) develops as a result of the accumulation of multiple genetic abnormalities. Loss of heterozygosity(LOH) is one of the most frequent genetic alterations that is found in NSCLC, and the chromosomal regions that display a high rate of LOH are thought to harbor tumor suppressor genes(TSGs). This study was done to determine the frequency of LOH in 21q with the aim of identifying potential TSG loci. Method : Thirty-nine surgically resected NSCLCs were analysed. Patients peripheral lymphocytes were used as the source of the normal DNA. Five microsatellite Inarkers of 21q were used to study LOH : 21q21.1(D21S1432, and D21S1994); 21q21.2-21.3(D21S1442) ; 21q22.1(21S1445) ; and 21q22.2-22.3(D21S266). The fractional allelic loss(FAL) in a tumor was calculated as the ratio of the number of markers showing LOH to the number of informative markers. Result : LOH for at least one locus was detected in 21 of 39 tumors(53.8%). Among the 21 tumors with LOH, 5(21.8%) showed LOH at almost all informative loci. Although statistically not significant, LOH was found more frequently in squamous cell carcinomas(15 of 23, 65.2%) than in adenocarcinomas(6 of 16, 37.5%). In the squamous cell carcinomas the frequency of LOH was higher in stage II-III (80.0%) than in stage I (53.8%). The FAL value in squamous cell carcinomas($0.431{\pm}0.375$) was significantly higher than that found in adenocarcinomas($0.l92{\pm}0.276$). Conclusion : These results suggest that LOH on 21q may be involved in the development of NSCLC, and that TSG(s) that contribute to the pathogenesis of NSCLC may exist on 21q.

  • PDF

Molecular Cytogenetic Characterization of Supernumerary Marker Chromosomes by Chromosomal Microarray (염색체 마이크로어레이를 이용한 표지염색체의 분자세포유전학적 특성)

  • Bae, Mi-Hyun;Yoo, Han-Wook;Lee, Jin-Ok;Hong, Maria;Seo, Eul-Ju
    • Journal of Genetic Medicine
    • /
    • v.8 no.2
    • /
    • pp.119-124
    • /
    • 2011
  • Purpose: Supernumerary marker chromosome (SMC) could be associated with various phenotypic abnormalities based on the chromosomal origin of SMCs. The present study aimed to determine the genomic contents of SMCs using chromosomal microarray and to analyze molecular cytogenetic characterizations and clinical phenotypes in patients with SMCs. Materials and Methods: Among patients with SMCs detected in routine chromosomal analysis, SMCs originating from chromosome 15 were excluded from the present study. CGH-based oligonucleotide chromosomal microarray was performed in 4 patients. Results: The chromosomal origins of SMCs were identified in 3 patients. Case 1 had a SMC of 16.1 Mb in 1q21.1-q23.3. Case 2 showed 21 Mb gain in 19p13.11-q13.12. Case 3 had a 4.5 Mb-sized SMC rearranged from 2 regions of 2.5 Mb in 22q11.1-q11.21 and 2.0 Mb in 22q11.22-q11.23. Conclusion: Case 1 presented a wide range of phenotypic abnormalities including the phenotype of 1q21.1 duplication syndrome. In case 2, Asperger-like symptoms are apparently related to 19p12-q13.11, hearing problems and strabismus to 19p13.11 and other features to 19q13.12. Compared with cat-eye syndrome type I and 22q11.2 microduplication syndrome, anal atresia in case 3 is likely related to 22q11.1-q11.21 while other features are related to 22q11.22-q11.23. Analyzing SMCs using high-resolution chromosomal microarray can help identify specific gene contents and to offer proper genetic counseling by determining genotype-phenotype correlations.

Acute Myeloid Leukemia with t(8;21)(q22;q22) (AML1/ETO) in a Patient with Marked Hypocellularity and Low Blasts Count

  • Chun, Sung-Ho;Cho, Hee-Soon;Lee, Chae-Hoon;Kim, Kyung-Dong;Kim, Min-Kyoung;Hyun, Myung-Soo;Jung, Soon-Il
    • Journal of Yeungnam Medical Science
    • /
    • v.24 no.1
    • /
    • pp.85-90
    • /
    • 2007
  • According to the World Health Organization (WHO) classification system, cases with t(8;21)(q22;q22) should be diagnosed as acute myeloid leukemia (AML) even with a blast count of less than 20 percent in blood or bone marrow. It is an uncommon manifestation, moreover hypocellularity is rarely observed in this subtype of leukemia. Here, we report a case of t(8;21) in a patient with marked hypocellularity of less than 5 percent and a blast count of less than 20 percent. This patient responded relatively well to chemotherapy. An allogeneic bone marrow transplantation was performed with good engraftment. This case suggests that hypocellular AML with a t(8;21) has as good a prognosis as hypercellular AML with t(8;21).

  • PDF

GENETIC ALTERATIONS OF HUMAN ORAL CANCERS USING COMPARATIVE GENOMIC HYBRIDIZATION (Comparative genomic hybridization 기법을 이용한 인체 구강암의 유전자 변화에 대한 연구)

  • Lee, Myeong-Reoyl;Shim, Kwang-Sup;Lee, Young-Soo;Woo, Soon-Seop;Kong, Gu
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.3
    • /
    • pp.245-253
    • /
    • 2000
  • The development and progression of oral cancer is associated with an accumulation of multiple genetic alterations through the multistep processes. Comparative genomic hybridization(CGH), newly developed cytogenetic and molecular biologic technique, has been widely accepted as a useful method to allow the detection of genetic imbalance in solid tumors and the screening for chromosome sites frequently affected by gains or losses in DNA copy number. The authors examined 19 primary oral squamous cell carcinomas using CGH to identify altered chromosome regions that might contain novel oncogenes and tumor suppressor genes. Interrelationship between these genetic aberrations detected and major oncogenes and tumor suppressor genes previously recognized in carcinogenesis of oral cancers was studied. 1. Changes in DNA copy number were detected in 14 of 19 oral cancers (78.9%, mean: 5.58, range: $3{\sim}13$). High level amplification was present in 4 cases at 9p23, $12p21.1{\sim}q13.1$, 3q and $8q24{\sim}24.3$. Fourteen cases(78.9%, mean: 3.00, range: $1{\sim}8$) showed gains of DNA copy number and 12 cases(70.5%, mean: 2.58, range: $1{\sim}9$) revealed losses of DNA copy number. 2. The most common gains were detected on 3q(52.6%), 5p(21.0%), 8q(21.0%), 9p(21.0%), and 11q(21.0%). The losses of DNA copy number were frequently occurred at 9p(36.8%), 17q(36.8%), 13q(26.3%), 4p(21.0%) and 9p(21.0%). 3. The minimal common regions of gains were repeatedly observed at $3q24{\sim}26.7$, $3q27{\sim}29$, $1q22{\sim}31$, $5p12{\sim}13.3$, $8q23{\sim}24$, and 11q13.1-13.3. The minimal common regions of losses were detected at $9q11{\sim}21.3$, 17p31, $13q22{\sim}34$, and 14p16. 4. In comparison of CGH results with tumor stages, the lower stage group showed more frequent gain at 3q, 5q, 9p, and 14q, whereas gains at 1q($1q22{\sim}31$) and 11q($11q13.1{\sim}13.3$) were mainly detected in higher stage group. The loss at $13q22{\sim}34$ was exclusively detected in higher stage. The results indicate that the most frequent genetic alterations in the development of oral cancers were gains at $3q24{\sim}26.3$, $1q22{\sim}31$, and $5p12{\sim}13.3$ and losses at $9q11{\sim}21.3$, 17p31, and 13q. It is suggested that genetic alterations manifested as gains at $3q24{\sim}26.3$, $3q27{\sim}29$, $5p12{\sim}13.3$ and 5p are associated with the early progression of oral cancer. Gains at $1q22{\sim}31$ and $11q13.1{\sim}13.3$ and loss at 13q22-34 could be involved in the late progression of oral cancers.

  • PDF

Genome-wide Examination of Chromosomal Aberrations in Neuroblastoma SH-SY5Y Cells by Array-based Comparative Genomic Hybridization

  • Do, Jin Hwan;Kim, In Su;Park, Tae-Kyu;Choi, Dong-Kug
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.105-112
    • /
    • 2007
  • Most neuroblastoma cells have chromosomal aberrations such as gains, losses, amplifications and deletions of DNA. Conventional approaches like fluorescence in situ hybridization (FISH) or metaphase comparative genomic hybridization (CGH) can detect chromosomal aberrations, but their resolution is low. In this study we used array-based comparative genomic hybridization to identify the chromosomal aberrations in human neuroblastoma SH-SY5Y cells. The DNA microarray consisting of 4000 bacterial artificial chromosome (BAC) clones was able to detect chromosomal regions with aberrations. The SH-SY5Y cells showed chromosomal gains in 1q12~ q44 (Chr1:142188905-246084832), 7 (over the whole chro-mosome), 2p25.3~p16.3 (Chr2:18179-47899074), and 17q 21.32~q25.3 (Chr17:42153031-78607159), while chromosomal losses detected were the distal deletion of 1p36.33 (Chr1:552910-563807), 14q21.1~q21.3 (Chr14:37666271-47282550), and 22q13.1~q13.2 (Chr22:36885764-4190 7123). Except for the gain in 17q21 and the loss in 1p36, the other regions of gain or loss in SH-SY5Y cells were newly identified.

1q21.1 microdeletion identified by chromosomal microarray in a newborn with upper airway obstruction

  • Kim, Yoon Hwa;Yang, Ju Seok;Lee, Young Joo;Bae, Mi Hye;Park, Kyung Hee;Lee, Dong Hyung;Shin, Kyung-Hwa;Kim, Seung Chul
    • Journal of Genetic Medicine
    • /
    • v.15 no.1
    • /
    • pp.34-37
    • /
    • 2018
  • A 1q21.1 microdeletion is an extremely rare chromosomal abnormality that results in phenotypic diversity and incomplete penetrance. Patients with a 1q21.1 microdeletion exhibit neurological-psychiatric problems, microcephaly, epilepsy, facial dysmorphism, cataract, and thrombocytopenia absent radius syndrome. We reported a neonate with confirmed intrauterine growth restriction (IUGR), micrognathia, glossoptosis, upper airway obstruction, facial dysmorphism, and eye abnormality at birth as well as developmental delay at the age of 1 year. These clinical manifestations, except for the IUGR and upper airway obstruction, in the neonate indicated a 1q21.1 microdeletion. Here, we report a rare case of a 1q21.1 microdeletion obtained via paternal inheritance in a newborn with upper airway obstruction caused by glossoptosis and tracheal stenosis.

A Case of a del(8p)/dup(8q) Recombinant Chromosome (8번 염색체 단완 결실과 장완 중복을 동반한 신생아 1례)

  • Kim, Jeong-Young;Im, Hyo-Bin;Son, Sang-Hee;Jeong, So-Young;Sung, Min-Jung;Seo, Son-Sang
    • Neonatal Medicine
    • /
    • v.16 no.1
    • /
    • pp.76-80
    • /
    • 2009
  • A male baby with intrauterine growth retardation had a short neck, small hands and feet, hypospadia, both grade I hydronephrosis, type II atrial septal defect, and moderate valvular pulmonary stenosis. The routine chromosome and banding analyses revealed a 46,XY,rec(8)del(8)(p21)dup(8) (q24.1)inv(8)(p21q24.1)pat chromosome constitution. His mother has normal chromosomes, but the father had 46,XY,inv(8)(p21q24.n Also his uncle had an inv(8) chromosome constitution. We used lymphocytes and examined 40 mitotic cells. All mitotic cells showed deletion of 8p21-->pter and duplication of 8q24.1 -->qter. Because Sp21 involves secretion of macrophage and lymphocyte against cancer cells, long-term follow-up for cancer will be needed.

ON p-ADIC q-BERNOULLl NUMBERS

  • Kim, Tae-Kyun
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.21-30
    • /
    • 2000
  • We give a proof of the distribution relation for q-Bernoulli polynomials $B_{k}$(x : q) by using q-integral and evaluate the values of p-adic q-L-function.n.

  • PDF

New Cyclic Difference Sets with Singer Parameters Constructed from d-Homogeneous Functions (d-동차함수로부터 생성된 Singer 파라미터를 갖는 새로운 순회차집합)

  • 노종선
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.1
    • /
    • pp.21-32
    • /
    • 2002
  • In this paper, for any prime q, new cyclic difference sets with Singer parameter equation omitted are constructed by using the q-ary sequences (d-homogeneous functions) of period $q_n$-1. When q is a power of 3, new cyclic difference sets with Singer parameter equation omitted are constructed from the ternary sequences of period $q_n$-1 with ideal autocorrealtion found by Helleseth, Kumar and Martinsen.