• Title/Summary/Keyword: Q-particle

Search Result 131, Processing Time 0.047 seconds

The analysis of partial discharge signals according to particle states in GIS (GIS내 파티클의 상태에 따른 부분방전 신호의 분석)

  • 김경화;이동준;곽희로
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.1
    • /
    • pp.67-74
    • /
    • 2000
  • This paper presents the analysis of partial discharge signals according to the particle states in GIS, for preventing the insulation failure and recognizing the particle states. In this paper, four states of particle (particle on electrode, particle on enclosure, particle on spacer and crossing particle) were simulated. And $\Phi$-Q-N distribution of partial discharge signals was analyzed and the statistical operator of the $\Phi$-Q distribution was analyzed. As a result, it was found that the states of particle were distinguished by analysis of the $\Phi$-Q-N distribution and the statistical operator of the $\Phi$-Q distribution.

  • PDF

Response Characteristics of Charged Particle Type Display (대전입자형 디스플레이의 응답특성)

  • Lee, Dong-Jin;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.169-173
    • /
    • 2009
  • We studied driving characteristics according to the ratio of mass and charging (m/q) value for charged toner particles with black and yellow color in charged particle type display panel. After biasing rectangle pulse to the transparency electrodes of putted panel with toner particles, its response time and contrast ratio are simultaneously measured using a laser as a optical source, photodiode as a detector and reflective system. As a results, contrast ratio is largest at the shortest response time region which is different to the particle because of m/q. We proposed relational equation for response time, m/q, cell gap and biasing voltage. It has not been studied and reported to analyze the relationship of response time, biasing voltage, lumping phenomena, cell gap, and contrast ratio for toner particle type display.

Studies on Analysis of Particle Lumping and Improvement of Driving Characteristics in Charged Particle Type Display (대전입자형 디스플레이에 있어서 입자뭉침의 분석 및 구동특성 개선에 관한 연구)

  • Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.915-919
    • /
    • 2011
  • We analyzed various forces affective to the charged particles in closed space, to explain the image degradation and lifetime-shortening phenomena because of particle lumping which is one of the serious problems in reflective displays. It is possible to predict the quantity of q/m which is the most important parameter in determining the optical and electrical characteristics, by calculating the image force and kinetic energy. For stable driving, the quantity of q/m must be in the defined range but it changes during the fabrication process, so we added the filtering process to solve this problem and obtained the well-defined nonlinear driving voltage coinciding with the threshold voltage. And we obtained the fully-driving property which prevents the particle lumping and decides the image quality and lifetime of panel from the optical characteristics and occupation surface of moving particles.

A Study on Driving Characteristics by Particle-inserting Method in Charged Particle Type Display (대전입자형 디스플레이의 입자주입 방법에 의한 구동특성 연구)

  • Lee, Dong-Jin;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.129-134
    • /
    • 2012
  • We analyzed the movement and response time of charged particles according to particle-inserting methods to understand the variation of quantity of q/m of charged particles, which is a very important factor in electrical and optical characteristics of the charged particle type display, such as lifetime, response time, contrast ratio, reflectivity, etc. For our study we used white and black charged particles of which diameter is $20{\mu}m$, prepared pieces of ITO(indium tin oxide) coated glass substrate, and formed ribs on the glass substrates. The width of a rib is $30{\mu}m$ and the cell size is $220{\mu}m{\times}220{\mu}m$. As the particle-inserting methods, the white and black charged particles were respectively inserted into a front and a rear panel with a very small electric field and also the mixture of the white and black charged particles were inserted into a rear panel. As a result of the driving characteristics of charged particles, the factors about variation of quantity of q/m according to the particle inserting method was experimentally demonstrate, showing very different driving voltage, response time, the particle movement, etc.

Measuring and Diagnostic System for particle and gas in Semiconductor Equipment (반도체 제조장비의 particle/gas 측정ㆍ분석 시스템)

  • 황희융;설용태;임효재;차옥환;이희환
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.178-180
    • /
    • 2002
  • In this Paper, we conducted a experimental study to measure a particle size distribution and mass spectrum with the special instrument such as ISPM and Q-MS. Also, we set up a total measuring system for monitoring the particle in the process chamber.

Analysis of Driving Characteristics and Memory Effect by Occupation Area Evaluation Method of Charged Particle Type Display Device (대전입자형 디스플레이 소자의 점유면적 평가방법에 의한 구동특성 및 메모리 효과 분석)

  • Kim, Jin-Sun;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.669-673
    • /
    • 2011
  • The charged particle type display is a kind of the reflectivity type display and shows an image by absorption and reflection of external light source, which has keep an image without additional electric power because of bistability. In this paper, we made a device whose cell gap is $56\;{\mu}m$ and also analyzed driving and memory characteristics by applied driving voltages. As a result, we found that the driving voltage and memory effect depend on q/m(charge to mass ratio) of charged particle. In this case of breakdown voltage, the devices showed degradation of reflectivity and memory effect due to irregular movement of overcharged particles. In addition, contrast ratio of the device varies with memory effect. Thus, we consider that device needs uniform q/m for improvement of electric and optical properties and memory effect.

The Cubic-Interpolated Pseudo-Particle Lattice Boltzmann Advection-Diffusion Model (이류확산 방정식 계산을 위한 입방보간유사입자 격자볼츠만 모델)

  • Mirae, Kim;Binqi, Chen;Kyung Chun, Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.74-85
    • /
    • 2022
  • We propose a Cubic-Interpolated Pseudo-Particle Lattice Boltzmann method (CIP-LBM) for the convection-diffusion equation (CDE) based on the Bhatnagar-Gross-Krook (BGK) scheme equation. The CIP-LBM relies on an accurate numerical lattice equilibrium particle distribution function on the advection term and the use of a splitting technique to solve the Lattice Boltzmann equation. Different schemes of lattice spaces such as D1Q3, D2Q5, and D2Q9 have been used for simulating a variety of problems described by the CDE. All simulations were carried out using the BGK model, although another LB scheme based on a collision term like two-relation time or multi-relaxation time can be easily applied. To show quantitative agreement, the results of the proposed model are compared with an analytical solution.

An Analysis of Reflectivity and Response Time by Charge-to-Mass of Charged Particles in an Electrophoretic Display

  • Kim, Young-Cho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.212-216
    • /
    • 2016
  • A reflective electronic display that uses negatively and positively charged particles has excellent bistability, a welldefined threshold voltage, and an extremely fast response time in comparison with other reflective displays. This type of display shows images through the movement of charged particles whose motion depends on the value of q/m (charge per mass for a particle). However, the ratio q/m can easily be changed by the forces acting on the charged particles in a cell of the panel and by friction that occurs after mixing oppositely charged particles and in the particle-insertion process. In this study, we propose a method to determine the appropriate range of q/m by using the reflectivity and response time of charged particles to modify q/m. In this manner, the electrical and optical properties of reflective displays are improved.

Performance Evaluation of Vortex Screen for Treatment of Fine Particles in Storm Runoff (Vortex Screen장치를 이용한 강우유출수내 미세입자 처리특성 분석)

  • Lee, Jun-Ho;Jung, Yun-Hee;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.256-262
    • /
    • 2009
  • The use of hydrodynamic separator is becoming increasingly popular for suspended solids reduction in urban storm runoff. This study is a laboratory investigation of the use of Vortex Screen to reduce the solids concentration of synthesized storm runoff. The synthesized storm runoff was made with water and addition of particles; manhole sediment, road sediment, fly ash, and ployvinyl chloride powder. Vortex Screen was made of acryl resin with 250 mm of diameter and height of 700 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The samples were taken simultaneously at the influent storage tank and effluent tank, and measured SS and COD concentrations. The ranges of surface loading rate were 110 to 1,550 $m^3/m^2$/day, and influent SS concentrations were varied from 141 to 1,986 mg/L. This paper was intended to evaluate the effect of inlet baffle and the ratio of underflow to overflow ($Q_U/Q_O$) on particle separation efficiency for various particle size using Vortex Screen. It was found that when increase of $Q_U/Q_O$ from 10% to 20%, SS removal efficiency was increased about 6%. The range of SS and COD removal efficiencies of road sediment particle size 125<$d_p$<300 ${\mu}m$ were 68.0~81.0%, 53.1~71.9%, respectively. Results showed that SS removal efficiency with inlet baffle improved by about 10~20% compared without inlet baffle.

Pattern Recognition of PD by Particles in GIS (GIS내 파티클에 의한 PD의 패턴인식)

  • 곽희로;이동준
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • This paper describes the quantitative analysis and the pattern recognition of partial discharge signals generated by particles in GIS. Four states of particles were simulated in this paper. Partial discharge signals from each state was measured and the Ф-Q-N distribution of partial discharge signals was displayed and then the Ф-Q, the Ф-Qm, the Ф-N and the Q-N distribution were displayed. Each distribution can be quantitatively represented by statistical parameters and the parameters were used for input data of pattern recognition. As the results, it was found that the forms of each distribution were different according to the particle states. Recognition rate using neural network was about 92〔%〕 and the more input data number, the more accurate results.