• Title/Summary/Keyword: Q polynomials

Search Result 207, Processing Time 0.026 seconds

REMARK ON AVERAGE OF CLASS NUMBERS OF FUNCTION FIELDS

  • Jung, Hwanyup
    • Korean Journal of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.365-374
    • /
    • 2013
  • Let $k=\mathbb{F}_q(T)$ be a rational function field over the finite field $\mathbb{F}_q$, where q is a power of an odd prime number, and $\mathbb{A}=\mathbb{F}_q[T]$. Let ${\gamma}$ be a generator of $\mathbb{F}^*_q$. Let $\mathcal{H}_n$ be the subset of $\mathbb{A}$ consisting of monic square-free polynomials of degree n. In this paper we obtain an asymptotic formula for the mean value of $L(1,{\chi}_{\gamma}{\small{D}})$ and calculate the average value of the ideal class number $h_{\gamma}\small{D}$ when the average is taken over $D{\in}\mathcal{H}_{2g+2}$.

ENTIRE SOLUTIONS OF DIFFERENTIAL-DIFFERENCE EQUATION AND FERMAT TYPE q-DIFFERENCE DIFFERENTIAL EQUATIONS

  • CHEN, MIN FENG;GAO, ZONG SHENG
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.447-456
    • /
    • 2015
  • In this paper, we investigate the differential-difference equation $(f(z+c)-f(z))^2+P(z)^2(f^{(k)}(z))^2=Q(z)$, where P(z), Q(z) are nonzero polynomials. In addition, we also investigate Fermat type q-difference differential equations $f(qz)^2+(f^{(k)}(z))^2=1$ and $(f(qz)-f(z))^2+(f^{(k)}(z))^2=1$. If the above equations admit a transcendental entire solution of finite order, then we can obtain the precise expression of the solution.

ON DELAY DIFFERENTIAL EQUATIONS WITH MEROMORPHIC SOLUTIONS OF HYPER-ORDER LESS THAN ONE

  • Risto Korhonen;Yan Liu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.229-246
    • /
    • 2024
  • We consider the delay differential equations $$b(z)w(z+1)+c(z)w(z-1)+a(z)\frac{w'(z)}{w^k(z)}=\frac{P(z, w(z))}{Q(z, w(z))}$$, where k ∈ {1, 2}, a(z), b(z) ≢ 0, c(z) ≢ 0 are rational functions, and P(z, w(z)) and Q(z, w(z)) are polynomials in w(z) with rational coefficients satisfying certain natural conditions regarding their roots. It is shown that if this equation has a non-rational meromorphic solution w with hyper-order ρ2(w) < 1, then either degw(P) = degw(Q) + 1 ≤ 3 or max{degw(P), degw(Q)} ≤ 1. In addition, it is shown that in the case max{degw(P), degw(Q)} = 0 the equations above can have such a solution, with an additional zero density requirement, only if the coefficients of the equation satisfy certain strict conditions.

MEROMORPHIC FUNCTIONS SHARING A NONZERO POLYNOMIAL CM

  • Li, Xiao-Min;Gao, Ling
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.319-339
    • /
    • 2010
  • In this paper, we prove that if $f^nf'\;-\;P$ and $g^ng'\;-\;P$ share 0 CM, where f and g are two distinct transcendental meromorphic functions, $n\;{\geq}\;11$ is a positive integer, and P is a nonzero polynomial such that its degree ${\gamma}p\;{\leq}\;11$, then either $f\;=\;c_1e^{cQ}$ and $g\;=\;c_2e^{-cQ}$, where $c_1$, $c_2$ and c are three nonzero complex numbers satisfying $(c_1c_2)^{n+1}c^2\;=\;-1$, Q is a polynomial such that $Q\;=\;\int_o^z\;P(\eta)d{\eta}$, or f = tg for a complex number t such that $t^{n+1}\;=\;1$. The results in this paper improve those given by M. L. Fang and H. L. Qiu, C. C. Yang and X. H. Hua, and other authors.

KUCERA GROUP OF CIRCULAR UNITS IN FUNCTION FIELDS

  • Ahn, Jae-Hyun;Jung, Hwan-Yup
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.233-239
    • /
    • 2007
  • Let $\mathbb{A}=\mathbb{F}_q$[T] be the polynomial ring over a finite field $\mathbb{F}_q$[T] and K=$\mathbb{F}_q$(T) its field of fractions. Let ${\ell}$ be a fixed prime divisor of q-1. Let J be a finite set of monic irreducible polynomials $P{\in}{\mathbb{A}}$ with deg $P{\equiv}0$ (mod ${\ell})$. In this paper we define the group $C_K$ of circular units in K=k$(\{\sqrt[{\ell}]P\;:\;P{\in}J\})$ in the sense of Kucera [4] and compute the index of $C_K$ in the full unit group $O^*_K$.

EXTRAPOLATED CRANK-NICOLSON APPROXIMATION FOR A LINEAR STEFAN PROBLEM WITH A FORCING TERM

  • Ahn, Min-Jung;Lee, Hyun-Young
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.773-793
    • /
    • 2001
  • The explicit expressions for the 2n+1 primitive idempotents in R/sub pⁿ/ = F[x]/< x/sup pⁿ/ -1>, where F is the field of prime power order q and the multiplicative order of q modulo pⁿ is ø(pⁿ)/2(n≥1 and p is an odd prime), are obtained. An algorithm for computing the generating polynomials of the minimal QR cyclic codes of length pⁿ, generated by these primitive idempotents, is given and hence some bounds on the minimum distance of some QR codes of prime length over GF(q)(q=2, 3, ...) are obtained.

VOLUMES OF GEODESIC BALLS IN HEISENBERG GROUPS ℍ5

  • Kim, Hyeyeon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.349-363
    • /
    • 2019
  • Let ${\mathbb{H}}^5$ be the 5-dimensional Heisenberg group equipped with a left-invariant metric. In this paper we calculate the volumes of geodesic balls in ${\mathbb{H}}^5$. Let $B_e(R)$ be the geodesic ball with center e (the identity of ${\mathbb{H}}^5$) and radius R in ${\mathbb{H}}^5$. Then, the volume of $B_e(R)$ is given by $${\hfill{12}}Vol(B_e(R))\\{={\frac{4{\pi}^2}{6!}}{\left(p_1(R)+p_4(R){\sin}\;R+p_5(R){\cos}\;R+p_6(R){\displaystyle\smashmargin{2}{\int\nolimits_0}^R}{\frac{{\sin}\;t}{t}}dt\right.}\\{\left.{\hfill{65}}{+q_4(R){\sin}(2R)+q_5(R){\cos}(2R)+q_6(R){\displaystyle\smashmargin{2}{\int\nolimits_0}^{2R}}{\frac{{\sin}\;t}{t}}dt}\right)}$$ where $p_n$ and $q_n$ are polynomials with degree n.

A RESULT ON AN OPEN PROBLEM OF LÜ, LI AND YANG

  • Majumder, Sujoy;Saha, Somnath
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.915-937
    • /
    • 2021
  • In this paper we deal with the open problem posed by Lü, Li and Yang [10]. In fact, we prove the following result: Let f(z) be a transcendental meromorphic function of finite order having finitely many poles, c1, c2, …, cn ∈ ℂ\{0} and k, n ∈ ℕ. Suppose fn(z), f(z+c1)f(z+c2) ⋯ f(z+cn) share 0 CM and fn(z)-Q1(z), (f(z+c1)f(z+c2) ⋯ f(z+cn))(k) - Q2(z) share (0, 1), where Q1(z) and Q2(z) are non-zero polynomials. If n ≥ k+1, then $(f(z+c_1)f(z+c_2)\;{\cdots}\;f(z+c_n))^{(k)}\;{\equiv}\;{\frac{Q_2(z)}{Q_1(z)}}f^n(z)$. Furthermore, if Q1(z) ≡ Q2(z), then $f(z)=c\;e^{\frac{\lambda}{n}z}$, where c, λ ∈ ℂ \ {0} such that eλ(c1+c2+⋯+cn) = 1 and λk = 1. Also we exhibit some examples to show that the conditions of our result are the best possible.

A Class of Bilateral Generating Functions for the Jacobi Polynomial

  • SRIVASTAVA, H M.
    • Journal of the Korean Mathematical Society
    • /
    • v.8 no.1
    • /
    • pp.25-30
    • /
    • 1971
  • Put ($$^*$$) $$G[x,y]={\sum}\limits^{p+q=n}_{p,q=0}[-n]_{p+q}c_{p,q}x^py^q$$, where $[{\lambda}]_m$ is the Pocbhammer symbol and the $c_{p,q}$ are arbitrary constants. Making use of the specialized forms of some of his earlier results (see [8] and [9] the author derives here bilateral generating functions of the type ($$^{**}$$) $${\sum}\limits^{\infty}_{n=0}{\frac{[\lambda]_n}{n!}}_2F_1[\array{{\rho}-n,\;{\alpha};\\{\lambda}+{\rho};}x]\;G[y,z]t^n$$ where ${\alpha}$, ${\rho}$ and ${\lambda}$ are arbitrary complex numbers. In particular, it is shown that when G[y, z] is a double hypergeometric polynomial, the right-band member of ($^{**}$) belongs to a class of general triple hypergeometric functions introduced by the author [7]. An interesting special case of ($^{**}$) when ${\rho}=-m,\;m$ being a nonnegative integer, yields a class of bilateral generating functions for the Jacobi polynomials $\{P_n{^{{\alpha},{\beta}}}(x)\}$ in the form ($$^{***}$$) $${\sum\limits^{\infty}_{n=0}}\(\array{m+n\\n}\)P{^{({\alpha}-n,{\beta}-n)}_{m+n}(x)\;G[y,z]{\frac{t^n}{n!}}$$, which provides a unification of several known results. Further extensions of ($^{**}$) and ($^{***}$) with G[y, z] replaced by an analogous multiple sum $H\[y_1,{\cdots},y_m\]$ are also discussed.

  • PDF

UNIVARIATE LEFT FRACTIONAL POLYNOMIAL HIGH ORDER MONOTONE APPROXIMATION

  • Anastassiou, George A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.593-601
    • /
    • 2015
  • Let $f{\in}C^r$ ([-1,1]), $r{\geq}0$ and let $L^*$ be a linear left fractional differential operator such that $L^*$ $(f){\geq}0$ throughout [0, 1]. We can find a sequence of polynomials $Q_n$ of degree ${\leq}n$ such that $L^*$ $(Q_n){\geq}0$ over [0, 1], furthermore f is approximated left fractionally and simulta-neously by $Q_n$ on [-1, 1]. The degree of these restricted approximations is given via inequalities using a higher order modulus of smoothness for $f^{(r)}$.