목적 지향 대화 시스템은 자연어 이해, 대화 관리자, 자연어 생성과 같은 세분화 모델들의 결합으로 이루어져있어 하위 모델에 대한 오류 전파에 취약하다. 이러한 문제점을 해결하기 위해 자연어 이해 모델과 대화 관리자를 하나의 네트워크로 구성하고 오류에 강건한 심층 Q 네트워크를 제안한다. 본 논문에서는 대화의 전체 흐름을 파악 할 수 있는 순환 신경망인 LSTM에 심층 Q 네트워크 적용한 심층 순환 Q 네트워크 기반 목적 지향 대화 시스템을 제안한다. 실험 결과, 제안한 심층 순환 Q 네트워크는 LSTM, 심층 Q 네트워크보다 각각 정밀도 1.0%p, 6.7%p 높은 성능을 보였다.
90도 위상 천이기나 필터와 같은 불완전한 시스템 요소에 의해 생성되는 I(inphase)축과 Q(quadrature)축 간의 불균형은 피할 수 없는 물리적 현상으로 동기 변/복조 시스템(coherent modulation/demodulation system) 구현에 있어서 성능 열화를 유발한다. 본 논문에서는 AWGN (additive white Gaussian noise) 채널 환경에서 수신기의 I/Q 불균형이 존재하는 경우, DVB(digital video broadcasting)-S2 시스템에서 사용되는 변조방식에 대한 정확하고 일반화된 심벌 오류 확률을 2차원 결합 가우시안 Q-함수(two-dimensional joint Gaussian Q-function)의 선형 결합(linear combination)의 형태로 유도한다.
Q-learning은 강화학습의 한 방법으로서, 여러 분야에 널리 응용되고 있는 기법이다. 최근에는 Linear Quadratic Regulation(이하 LQR) 문제에 성공적으로 적용된 바 있는데, 특히, 시스템모델의 파라미터에 대한 구체적인 정보가 없는 상태에서 적절한 입력과 출력만을 가지고 학습을 통해 문제를 해결할 수 있어서 상황에 따라서 매우 실용적인 대안이 될 수 있다. Neural Q-learning은 이러한 Q-learning의 Q-value를 MLP(multilayer perceptron) 신경망의 출력으로 대치시킴으로써, 비선형 시스템의 최적제어 문제를 다룰 수 있게 한 방법이다. 그러나, Neural Q방식은 신경망의 구조를 먼저 결정한 후 역전파 알고리즘을 이용하여 학습하는 절차를 취하기 때문에, 시행착오를 통하여 신경망 구조를 결정해야 한다는 점, 역전파 알고리즘의 적용으로 인해 신경망의 연결강도 값들이 지역적 최적해로 수렴한다는 점등의 문제점을 상속받는 한계가 있다. 따라서, 본 논문에서는 Neural-0 학습의 도구로, 역전파 알고리즘으로 학습되는 MLP 신경망을 사용하는 대신 최근 들어 여러 분야에서 그 성능을 인정받고 있는 서포트 벡터 학습법을 사용하는 방법을 택하여, $\varepsilon$-SVR(Epsilon Support Vector Regression)을 이용한 Q-value 근사 기법을 제안하고 관련 수식을 유도하였다. 그리고, 모의 실험을 통하여, 제안된 서포트 벡터학습 기반 Neural-Q 방법의 적용 가능성을 알아보았다.
XML 기반의 전자책 리더 시스템인 Q+-리더의 개발을 소개한다. 이 시스템은 정보가전 용 내장형 플랫폼 Q+를 목표로 개발되었다. 본 리더 시스템은 OEB 표준에서 규정한 XML 기반의 컨텐트 형식과 CSS에 의한 스타일을 지원한다. 본 시스템은 전자책 컨텐츠를 사용자에게 랜더링해 주는 역할을 하는데, 이러한 랜더링 기능을 내재함으로서 전자책 리더 시스템은 컨텐츠의 사용에 대한 제어가 가능하게 된다. 본 시스템은 자바 언어로 개발되어 여타 플랫폼에서도 사용 가능할 뿐 아니라 개방형 구조로 설계되어 OEB 이외의 다른 표준에 대해서도 쉽게 확장 가능할 것으로 기대된다.
퍼브/서브 시스템(Pub/Sub System)은 시스템에서 발행되는 정보 중 사용자가 등록한 관심 정보만을 사용자에게 전달해주는 시스템이다. 기존의 퍼브/서브 시스템은 컨텐트의 저장 및 전달을 담당하는 브로커들을 네트워크화 하여 구현되었다. 모바일 사용자가 급증함에 따라 사용자의 관심위치 정보와 같은 지속적으로 변하게 되는 관심정보를 다루기 위한 퍼브/서브 시스템에 대한 수요가 부각 되고 있다. 이 논문에서는 기존의 퍼브/서브 시스템에서 깊이 고려하지 않았던, 관심 위치 정보의 빈번한 변화를 효과적으로 처리하기 위한 브로커 네트워크 기반의 퍼브/서브 시스템을 제안한다. 사용자의 행동 패턴이나 지리적 특성을 고려해 퍼브/서브 시스템에서 관리하는 공간 데이터 영역을 Slow Moving Region과 Normal Moving Region의 두가지 타입으로 구분하고, 각 영역에 대한 사용자의 요청을 효과적으로 지원하기 위해 Q+R트리를 사용하여 브로커를 관리한다. 시뮬레이션을 사용한 실험 결과를 통해 제안하는 Q+R트리 기반의 브로커 네트워크가 불필요한 브로커의 로드와 네트워크 트래픽을 감소시킴으로써 보다 효과적으로 지속적인 사용자의 관심 위치 정보 변화를 지원할 수 있음을 확인하였다.
Purpose Customers consider the overall experience with the company as important as the quality of the product, and companies are also paying attention to creating long-term relationships with customers through optimal customer experiences. In this study, we propose a customer experience management process called 'CX-Q', which combines customer journey map and Q-methodology to understand the importance of customer experience based on the overall customer experience. Design/methodology/approach. CX-Q is a process that combines Q-methodology and customer journey maps, allowing stakeholders to explore and improve customer experiences at each contact point while engaging with brands, products, and services. It also enables them to derive customer experience insights and important management points for each segment. To demonstrate the usefulness of the proposed CX-Q, this study analyzed the experience of customers who used the Airbnb travel platform service as an example, applying the CX-Q process. Findings A total of four customer segments were derived, and it was found that each segment valued different attributes during the customer journey stage. The customer experience analysis using the CX-Q process proposed in this study is expected to help understand customers in more detail and assist in managing and improving customer experience.
본 논문은 QPSK 변조방식을 사용하는 W-CDMA 사용자 설비 시스템에서 진폭 불균형 및 위상 불균형과 같은 RF I/Q 성능열화 요인들에 의한 시스템 성능열화 현상을 다루었다. I/Q 진폭 및 위상 에러에 의한 인접 심볼 간 거리변화를 이용하여 BER 성능 열화를 분석하였고, Matlab 시뮬레이션을 통해 I/Q 진폭 및 위상 에러에 의한 BER 성능열화를 검토하였다. 테스트를 고려하여 구현된 RF 트랜시버와 변복조 측정 장비를 이용하여 성능열화를 에러 벡터 크기 값으로 측정함으로써 하드웨어 구현관점에서 W-CDMA사용자 설비 시스템의 I/Q 진폭 및 위상 에러에 관한 최소 성능요구 사항과 성능열화 요인 측정 방법을 제시하였다.
In this paper, we propose a 4-step inference method needed for constructing a natural language communication system. The method is used to obtain fuzzy quantifier Q′when QA is Fisr τ⇔ Q′(m′A) is mF is m"is τ is inferred (Q, Q′: quantifiers, A: fuzzy subject, m′, m": modifiers, y: fuzzy predicate, τ: truth qualifier). We show that Q′is resolved step by step for two types of Q, including a non-increasing type (few,...) and a non-decreasing type(most,...).
강화학습의 한가지 방법인 Q-learning은 최근에 Linear Quadratic Regulation(이하 LQR) 문제에 성공적으로 적용된 바 있다. 특히, 시스템 모델의 파라미터에 대한 구체적인 정보없이 적절한 입ㆍ출력만으로 학습을 통해 문제의 해결이 가능하므로 상황에 따라 매우 실용적인 방법이 될 수 있다. 뉴럴-큐 기법은 이러한 Q-learning의 Q-value를 MLP(multilayer perceptron) 신경망의 출력으로 대치시켜, 비선형 시스템의 최적제어 문제를 다룰 수 있게 한 방법이다. 그러나, 뉴럴-큐 기법은 신경망의 구조를 먼저 결정한 후 역전파 알고리즘을 이용해 학습하는 절차를 행하므로, 시행착오를 통해 신경망 구조를 결정해야 한다는 점, 역전파 알고리즘의 적용에 따라 신경망의 연결강도 값들이 지역적 최적해로 수렴한다는 점등의 문제점이 있다. 본 논문에서는 뉴럴-큐 학습의 도구로 KFD회귀를 이용하여 Q 함수의 근사 기법을 제안하고 관련 수식을 유도하였다. 그리고, 모의 실험을 통하여, 제안된 뉴럴-큐 방법의 적용 가능성을 알아보았다.
It is desirable for autonomous robot systems to possess the ability to behave in a smooth and continuous fashion when interacting with an unknown environment. Although Q-learning requires a lot of memory and time to optimize a series of actions in a continuous state space, it may not be easy to apply the method to such a real environment. In this paper, for continuous state space applications, to solve problem and a triangular type Q-value model\ulcorner This sounds very ackward. What is it you want to solve about the Q-value model. Our learning method can estimate a current Q-value by its relationship with the neighboring states and has the ability to learn its actions similar to that of Q-learning. Thus, our method can enable robots to move smoothly in a real environment. To show the validity of our method, navigation comparison with Q-learning are given and visual tracking simulation results involving an 2-DOF SCARA robot are also presented.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.