• Title/Summary/Keyword: Q*f

Search Result 1,363, Processing Time 0.027 seconds

HYPERSTABILITY OF A SUM FORM FUNCTIONAL EQUATION RELATED DISTANCE MEASURES

  • Lee, Young Whan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.147-156
    • /
    • 2020
  • The functional equation related to a distance measure f(pr, qs) + f(ps, qr) = M(r, s)f(p, q) + M(p, q)f(r, s) can be generalized a sum form functional equation as follows $${\frac{1}{n}}{\sum\limits_{i=0}^{n-1}}f(P{\cdot}{\sigma}_i(Q))=M(Q)f(P)+M(P)f(Q)$$ where f, g is information measures, P and Q are the set of n-array discrete measure, and σi is a permutation for each i = 0, 1, ⋯, n-1. In this paper, we obtain the hyperstability of the above type functional equation.

3-DESIGNS DERIVED FROM PLANE ALGEBRAIC CURVES

  • Yu, Ho-Seog
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.817-823
    • /
    • 2007
  • In this paper, we develop a simple method for computing the stabilizer subgroup of a subgroup of $$D(g)={{\alpha}{\in}\mathbb{F}_q|there\;is\;a\;{\beta}{\in}{\mathbb{F}}^x_q\;such\;that\;{\beta}^n=g(\alpha)}$$ in $PSL_2(\mathbb{F}_q)$, where q is a large odd prime power, n is a positive integer dividing q-1, and $g(x){\in}\mathbb{F}_q[x]$. As an application, we construct new infinite families of 3-designs (cf. Examples 3.4 and 3.5).

A NOTE ON CONTINUED FRACTIONS WITH SEQUENCES OF PARTIAL QUOTIENTS OVER THE FIELD OF FORMAL POWER SERIES

  • Hu, Xuehai;Shen, Luming
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.875-883
    • /
    • 2012
  • Let $\mathbb{F}_q$ be a finite field with q elements and $\mathbb{F}_q((X^{-1}))$ be the field of all formal Laurent series with coefficients lying in $\mathbb{F}_q$. This paper concerns with the size of the set of points $x{\in}\mathbb{F}_q((X^{-1}))$ with their partial quotients $A_n(x)$ both lying in a given subset $\mathbb{B}$ of polynomials in $\mathbb{F}_q[X]$ ($\mathbb{F}_q[X]$ denotes the ring of polynomials with coefficients in $\mathbb{F}_q$) and deg $A_n(x)$ tends to infinity at least with some given speed. Write $E_{\mathbb{B}}=\{x:A_n(x){\in}\mathbb{B},\;deg\;A_n(x){\rightarrow}{\infty}\;as\;n{\rightarrow}{\infty}\}$. It was shown in [8] that the Hausdorff dimension of $E_{\mathbb{B}}$ is inf{$s:{\sum}_{b{\in}\mathbb{B}}(q^{-2\;deg\;b})^s$ < ${\infty}$}. In this note, we will show that the above result is sharp. Moreover, we also attempt to give conditions under which the above dimensional formula still valid if we require the given speed of deg $A_n(x)$ tends to infinity.

Morphological Characteristics of Leaves, Trichomes and acorns in artificial hybrids of Quercus aliena ${\times}$ Q. mongolica var. crispula and Q. serrata ${\times}$ Q. mongolica var. crispula hybrids

  • Lee, Jeong-Ho;Kang, Kyu-Suk
    • Korean Journal of Plant Resources
    • /
    • v.22 no.3
    • /
    • pp.266-272
    • /
    • 2009
  • Morphological characteristics of leaves, trichomes and acorns were investigated in 6-year-old artificial hybrids of Q. aliena ${\times}$ Q. mongolica var. crispula and Q. serrata ${\times}$ Q. mongolica var. crispula. Leaf shapes of Q. aliena ${\times}$ Q. mongolica var. crispula $F_{1}$ were obovate and resembled to that of Q. aliena. But several characters including the size of leaf and petiole and the shape of leaf base resembled to those of Q. mongolica var. crispula. In F1 hybrids, small stellate hairs distributed sparsely on the abaxial surface and their lay length was intermediate between both parents. There were no big differences on characters of nuts and cupules between both parents and $F_{1}$ hybrids. Leaf shapes of Q. serrata ${\times}$ Q. mongolica var. crispula $F_{1}$ were obovate-elliptic, and the leaf shape and leaf base and the length of petiole resembled to those of Q. mongolica var. crispula, but leaf size and serration resembled to those of Q. serrata. The number of serration in a leaf was intermediate between both parents. Small stellate hairs distributed sparsely and large single hairs were mixed on the reverse side of leaves. there were no big differences on the number and size of stellate hairs between $F_{1}$ hybrid and Q. serrata. It is able to distinguish $F_{1}$ hybrids from both parents by the size leaf size and shapes, leaf base and serration, petiole length and trichome type in the leaf.

A NOTE ON CYCLOTOMIC UNITS IN FUNCTION FIELDS

  • Jung, Hwanyup
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.433-438
    • /
    • 2007
  • Let $\mathbb{A}=\mathbb{F}_q[T]$ and $k=\mathbb{F}_q(T)$. Assume q is odd, and fix a prime divisor ${\ell}$ of q - 1. Let P be a monic irreducible polynomial in A whose degree d is divisible by ${\ell}$. In this paper we define a subgroup $\tilde{C}_F$ of $\mathcal{O}^*_F$ which is generated by $\mathbb{F}^*_q$ and $\{{\eta}^{{\tau}^i}:0{\leq}i{\leq}{\ell}-1\}$ in $F=k(\sqrt[{\ell}]{P})$ and calculate the unit-index $[\mathcal{O}^*_F:\tilde{C}_F]={\ell}^{\ell-2}h(\mathcal{O}_F)$. This is a generalization of [3, Theorem 16.15].

  • PDF

Convex hulls and extreme points of families of symmetric univalent functions

  • Hwang, J.S.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • Earlier in 1935[12], M. S. Robertson introduced the class of quadrant preserving functions. More precisely, let Q be the class of all functions f(z) analytic in the unit disk $D = {z : $\mid$z$\mid$ < 1}$ such that f(0) = 0, f'(0) = 1, and the range f(z) is in the j-th quadrant whenever z is in the j-th quadrant of D, j = 1,2,3,4. This class Q contains the subclass of normalized, odd univalent functions which have real coefficients. On the other hand, this class Q is contained in the class T of odd typically real functions which was introduced by W. Rogosinski [13]. Clearly, if $f \in Q$, then f(z) is real when z is real and therefore the coefficients of f are all real. Recently, it was observed by Y. Abu-Muhanna and T. H. MacGregor [1] that any function $f \in Q$ is odd. Instead of functions "preserving quadrants", the authors [1] have introduced the notion of "preserving sectors".

  • PDF

ENTIRE SOLUTIONS OF DIFFERENTIAL-DIFFERENCE EQUATION AND FERMAT TYPE q-DIFFERENCE DIFFERENTIAL EQUATIONS

  • CHEN, MIN FENG;GAO, ZONG SHENG
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.447-456
    • /
    • 2015
  • In this paper, we investigate the differential-difference equation $(f(z+c)-f(z))^2+P(z)^2(f^{(k)}(z))^2=Q(z)$, where P(z), Q(z) are nonzero polynomials. In addition, we also investigate Fermat type q-difference differential equations $f(qz)^2+(f^{(k)}(z))^2=1$ and $(f(qz)-f(z))^2+(f^{(k)}(z))^2=1$. If the above equations admit a transcendental entire solution of finite order, then we can obtain the precise expression of the solution.

NOTES ON THE SPACE OF DIRICHLET TYPE AND WEIGHTED BESOV SPACE

  • Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.393-402
    • /
    • 2013
  • For 0 < $p$ < ${\infty}$, ${\alpha}$ > -1 and 0 < $r$ < 1, we show that if $f$ is in the space of Dirichlet type $\mathfrak{D}^p_{p-1}$, then ${\int}_{1}^{0}M_{p}^{p}(r,f^{\prime})(1-r)^{p-1}rdr$ < ${\infty}$ and ${\int}_{1}^{0}M_{(2+{\alpha})p}^{(2+{\alpha})p}(r,f^{\prime})(1-r)^{(2+{\alpha})p+{\alpha}}rdr$ < ${\infty}$ where $M_p(r,f)=\[\frac{1}{2{\pi}}{\int}_{0}^{2{\pi}}{\mid}f(re^{it}){\mid}^pdt\]^{1/p}$. For 1 < $p$ < $q$ < ${\infty}$ and ${\alpha}+1$ < $p$, we show that if there exists some positive constant $c$ such that ${\parallel}f{\parallel}_{L^{q(d{\mu})}}{\leq}c{\parallel}f{\parallel}_{\mathfrak{D}^p_{\alpha}}$ for all $f{\in}\mathfrak{D}^p_{\alpha}$, then ${\parallel}f{\parallel}_{L^{q(d{\mu})}}{\leq}c{\parallel}f{\parallel}_{\mathcal{B}_p(q)}$ where $\mathcal{B}_p(q)$ is the weighted Besov space. We also find the condition of measure ${\mu}$ such that ${\sup}_{a{\in}D}{\int}_D(k_a(z)(1-{\mid}a{\mid}^2)^{(p-a-1)})^{q/p}d{\mu}(z)$ < ${\infty}$.

ON HYPERHOLOMORPHIC Fαω,G(p, q, s) SPACES OF QUATERNION VALUED FUNCTIONS

  • Kamal, Alaa;Yassen, Taha Ibrahim
    • Korean Journal of Mathematics
    • /
    • v.26 no.1
    • /
    • pp.87-101
    • /
    • 2018
  • The purpose of this paper is to define a new class of hyperholomorphic functions spaces, which will be called $F^{\alpha}_{{\omega},G}$(p, q, s) type spaces. For this class, we characterize hyperholomorphic weighted ${\alpha}$-Bloch functions by functions belonging to $F^{\alpha}_{{\omega},G}$(p, q, s) spaces under some mild conditions. Moreover, we give some essential properties for the extended weighted little ${\alpha}$-Bloch spaces. Also, we give the characterization for the hyperholomorphic weighted Bloch space by the integral norms of $F^{\alpha}_{{\omega},G}$(p, q, s) spaces of hyperholomorphic functions. Finally, we will give the relation between the hyperholomorphic ${\mathcal{B}}^{\alpha}_{{\omega},0}$ type spaces and the hyperholomorphic valued-functions space $F^{\alpha}_{{\omega},G}$(p, q, s).

ON ABSOLUTE VALUES OF 𝓠K FUNCTIONS

  • Bao, Guanlong;Lou, Zengjian;Qian, Ruishen;Wulan, Hasi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.561-568
    • /
    • 2016
  • In this paper, the effect of absolute values on the behavior of functions f in the spaces $\mathcal{Q}_K$ is investigated. It is clear that $g{\in}\mathcal{Q}_K({\partial}{\mathbb{D}}){\Rightarrow}{\mid}g{\mid}{\in}\mathcal{Q}_K({\partial}{\mathbb{D}})$, but the converse is not always true. For f in the Hardy space $H^2$, we give a condition involving the modulus of the function only, such that the condition together with ${\mid}f{\mid}{\in}\mathcal{Q}_K({\partial}{\mathbb{D}})$ is equivalent to $f{\in}\mathcal{Q}_K$. As an application, a new criterion for inner-outer factorisation of $\mathcal{Q}_K$ spaces is given. These results are also new for $Q_p$ spaces.