• Title/Summary/Keyword: Q*f

Search Result 1,363, Processing Time 0.024 seconds

Polynomials satisfying f(x-a)f(x)+c over finite fields

  • Park, Hong-Goo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.277-283
    • /
    • 1992
  • Let GF(q) be a finite field with q elements where q=p$^{n}$ for a prime number p and a positive integer n. Consider an arbitrary function .phi. from GF(q) into GF(q). By using the Largrange's Interpolation formula for the given function .phi., .phi. can be represented by a polynomial which is congruent (mod x$^{q}$ -x) to a unique polynomial over GF(q) with the degree < q. In [3], Wells characterized all polynomial over a finite field which commute with translations. Mullen [2] generalized the characterization to linear polynomials over the finite fields, i.e., he characterized all polynomials f(x) over GF(q) for which deg(f) < q and f(bx+a)=b.f(x) + a for fixed elements a and b of GF(q) with a.neq.0. From those papers, a natural question (though difficult to answer to ask is: what are the explicit form of f(x) with zero terms\ulcorner In this paper we obtain the exact form (together with zero terms) of a polynomial f(x) over GF(q) for which satisfies deg(f) < p$^{2}$ and (1) f(x+a)=f(x)+c for the fixed nonzero elements a and c in GF(q).

  • PDF

ORDER, TYPE AND ZEROS OF ANALYTIC AND MEROMORPHIC FUNCTIONS OF [p, q] - ϕ ORDER IN THE UNIT DISC

  • Pulak Sahoo;Nityagopal Biswas
    • Korean Journal of Mathematics
    • /
    • v.31 no.2
    • /
    • pp.229-242
    • /
    • 2023
  • In this paper, we investigate the [p, q] - φ order and [p, q] - φ type of f1 + f1, ${\frac{f_1}{f_2}}$ and f1 f1, where f1 and f1 are analytic or meromorphic functions with the same [p, q]-φ order and different [p, q]-φ type in the unit disc. Also, we study the [p, q]-φ order and [p, q]-φ type of different f and its derivative. At the end, we investigate the relationship between two different [p, q] - φ convergence exponents of f. We extend some earlier precedent well known results.

VALUE DISTRIBUTION OF SOME q-DIFFERENCE POLYNOMIALS

  • Xu, Na;Zhong, Chun-Ping
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.29-38
    • /
    • 2016
  • For a transcendental entire function f(z) with zero order, the purpose of this article is to study the value distributions of q-difference polynomial $f(qz)-a(f(z))^n$ and $f(q_1z)f(q_2z){\cdots}f(q_mz)-a(f(z))^n$. The property of entire solution of a certain q-difference equation is also considered.

LOCAL PERMUTATION POLYNOMIALS OVER FINITE FIELDS

  • Lee, Jung-Bok;Ko, Hyoung-June
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.539-545
    • /
    • 1994
  • Let $q = p^r$, where p is a prime. A polynomial $f(x) \in GF(q)[x]$ is called a permutation polynomial (PP) over GF(q) if the numbers f(a) where $a \in GF(Q)$ are a permutation of the a's. In other words, the equation f(x) = a has a unique solution in GF(q) for each $a \in GF(q)$. More generally, $f(x_1, \cdots, x_n)$ is a PP in n variables if $f(x_1,\cdots,x_n) = \alpha$ has exactly $q^{n-1}$ solutions in $GF(q)^n$ for each $\alpha \in GF(q)$. Mullen ([3], [4], [5]) has studied the concepts of local permutation polynomials (LPP's) over finite fields. A polynomial $f(x_i, x_2, \cdots, x_n) \in GF(q)[x_i, \codts,x_n]$ is called a LPP if for each i = 1,\cdots, n, f(a_i,\cdots,x_n]$ is a PP in $x_i$ for all $a_j \in GF(q), j \neq 1$.Mullen ([3],[4]) found a set of necessary and three variables over GF(q) in order that f be a LPP. As examples, there are 12 LPP's over GF(3) in two indeterminates ; $f(x_1, x_2) = a_{10}x_1 + a_{10}x_2 + a_{00}$ where $a_{10} = 1$ or 2, $a_{01} = 1$ or x, $a_{00} = 0,1$, or 2. There are 24 LPP's over GF(3) of three indeterminates ; $F(x_1, x_2, x_3) = ax_1 + bx_2 +cx_3 +d$ where a,b and c = 1 or 2, d = 0,1, or 2.

  • PDF

ON THE TRANSCENDENTAL ENTIRE SOLUTIONS OF A CLASS OF DIFFERENTIAL EQUATIONS

  • Lu, Weiran;Li, Qiuying;Yang, Chungchun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1281-1289
    • /
    • 2014
  • In this paper, we consider the differential equation $$F^{\prime}-Q_1=Re^{\alpha}(F-Q_2)$$, where $Q_1$ and $Q_2$ are polynomials with $Q_1Q_2{\neq}0$, R is a rational function and ${\alpha}$ is an entire function. We consider solutions of the form $F=f^n$, where f is an entire function and $n{\geq}2$ is an integer, and we prove that if f is a transcendental entire function, then $\frac{Q_1}{Q_2}$ is a polynomial and $f^{\prime}=\frac{Q_1}{nQ_2}f$. This theorem improves some known results and answers an open question raised in [16].

Leaf Morphological Characteristics of Artificial Hybrids on Some Deciduous Quercus Taxa(II) (낙엽성(落葉性) 참나무류 인공교잡(人工交雜) 묘목(苗木)의 엽형(葉形) 특성(特性)(II))

  • Lee, Jeong Ho;Kwon, Ki Won
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.1
    • /
    • pp.18-23
    • /
    • 2000
  • Leaves of various, 3 to 5-year-old Quercus hybrids were intermediate in size between their parental species. The petiole length was the smallest in the hybrids of Q. dentata ${\times}$ Q. crispula $F_1$ and was intermediate in the hybrids of Q. aliena ${\times}$ Q. serrata $F_1$ and Q. dentata ${\times}$ Q. aliena $F_1$ between their parents. The number of serration in hybrids was close to their mother tree's in most of crossing combinations. The serration depth and the ratio between longitudinal and transverse length of leaves were intermediate between the values of their parental species.

  • PDF

THE GROWTH OF BLOCH FUNCTIONS IN SOME SPACES

  • Wenwan Yang;Junming Zhugeliu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.959-968
    • /
    • 2024
  • Suppose f belongs to the Bloch space with f(0) = 0. For 0 < r < 1 and 0 < p < ∞, we show that $$M_p(r,\,f)\,=\,({\frac{1}{2\pi}}{\int_{0}^{2\pi}}\,{\mid}f(re^{it}){\mid}^pdt)^{1/p}\,{\leq}\,({\frac{{\Gamma}(\frac{p}{2}+1)}{{\Gamma}(\frac{p}{2}+1-k)}})^{1/p}\,{\rho}{\mathcal{B}}(log\frac{1}{1-r^2})^{1/2},$$ where ρʙ(f) = supz∈ⅅ(1 - |z|2)|f'(z)| and k is the integer satisfying 0 < p - 2k ≤ 2. Moreover, we prove that for 0 < r < 1 and p > 1, $${\parallel}f_r{\parallel}_{B_q}\,{\leq}\,r\,{\rho}{\mathcal{B}}(f)(\frac{1}{(1-r^2)(q-1)})^{1/q},$$ where fr(z) = f(rz) and ||·||ʙq is the Besov seminorm given by ║f║ʙq = (∫𝔻 |f'(z)|q(1-|z|2)q-2dA(z)). These results improve previous results of Clunie and MacGregor.

AN ACTION OF A GALOIS GROUP ON A TENSOR PRODUCT

  • Hwang, Yoon-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.645-648
    • /
    • 2005
  • Let K be a Galois extension of a field F with G = Gal(K/F). Let L be an extension of F such that $K\;{\otimes}_F\;L\;=\; N_1\;{\oplus}N_2\;{\oplus}{\cdots}{\oplus}N_k$ with corresponding primitive idempotents $e_1,\;e_2,{\cdots},e_k$, where Ni's are fields. Then G acts on $\{e_1,\;e_2,{\cdots},e_k\}$ transitively and $Gal(N_1/K)\;{\cong}\;\{\sigma\;{\in}\;G\;/\;{\sigma}(e_1)\;=\;e_1\}$. And, let R be a commutative F-algebra, and let P be a prime ideal of R. Let T = $K\;{\otimes}_F\;R$, and suppose there are only finitely many prime ideals $Q_1,\;Q_2,{\cdots},Q_k$ of T with $Q_i\;{\cap}\;R\;=\;P$. Then G acts transitively on $\{Q_1,\;Q_2,{\cdots},Q_k\},\;and\;Gal(qf(T/Q_1)/qf(R/P))\;{\cong}\;\{\sigma{\in}\;G/\;{\sigma}-(Q_1)\;=\;Q_1\}$ where qf($T/Q_1$) is the quotient field of $T/Q_1$.

A RESULT ON A CONJECTURE OF W. LÜ, Q. LI AND C. YANG

  • Majumder, Sujoy
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.411-421
    • /
    • 2016
  • In this paper, we investigate the problem of transcendental entire functions that share two values with one of their derivative. Let f be a transcendental entire function, n and k be two positive integers. If $f^n-Q_1$ and $(f^n)^{(k)}-Q_2$ share 0 CM, and $n{\geq}k+1$, then $(f^n)^{(k)}{\equiv}{\frac{Q_2}{Q_1}}f^n$. Furthermore, if $Q_1=Q_2$, then $f=ce^{\frac{\lambda}{n}z}$, where $Q_1$, $Q_2$ are polynomials with $Q_1Q_2{\not\equiv}0$, and c, ${\lambda}$ are non-zero constants such that ${\lambda}^k=1$. This result shows that the Conjecture given by W. $L{\ddot{u}}$, Q. Li and C. Yang [On the transcendental entire solutions of a class of differential equations, Bull. Korean Math. Soc. 51 (2014), no. 5, 1281-1289.] is true. Also we exhibit some examples to show that the conditions of our result are the best possible.

EVERY POLYNOMIAL OVER A FIELD CONTAINING 𝔽16 IS A STRICT SUM OF FOUR CUBES AND ONE EXPRESSION A2 + A

  • Gallardo, Luis H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.941-947
    • /
    • 2009
  • Let q be a power of 16. Every polynomial $P\in\mathbb{F}_q$[t] is a strict sum $P=A^2+A+B^3+C^3+D^3+E^3$. The values of A,B,C,D,E are effectively obtained from the coefficients of P. The proof uses the new result that every polynomial $Q\in\mathbb{F}_q$[t], satisfying the necessary condition that the constant term Q(0) has zero trace, has a strict and effective representation as: $Q=F^2+F+tG^2$. This improves for such q's and such Q's a result of Gallardo, Rahavandrainy, and Vaserstein that requires three polynomials F,G,H for the strict representation $Q=F^2$+F+GH. Observe that the latter representation may be considered as an analogue in characteristic 2 of the strict representation of a polynomial Q by three squares in odd characteristic.