• Title/Summary/Keyword: Pyrrolidinone

Search Result 35, Processing Time 0.018 seconds

Multicyclization Reaction of 2,3-Dichloro-1,4-Naphthoquinone (2,3-디클로로-1,4-나프토퀴논의 다중고리화 반응)

  • 김순옥;박재경;홍사미
    • YAKHAK HOEJI
    • /
    • v.39 no.2
    • /
    • pp.118-130
    • /
    • 1995
  • Aliphatic & aromatic compounds with two nucleophilic functional groups which were chosen as nucleophiles reacted with 2,3-dichloro-1,4-naphthoquinone as a substrate to give cyclized products by nucleophilic vinyl substitution. And the trends in the syntheses of the heterocyclic compounds was studied and expounded. Besides, the biological activities of the products, especially activity as an agricultural chemical, were examined. Moreover 5-aminomethyl-2-pyrrolidinone was synthesized for the purpose of forming a polynuclear heterocyclic compound containing a similar structure of azasteroid. However only one chlorine of 2,3-dichloro-1,4-naphthoquinone was replaced by an amino group of pyrrolidinone and cyclization did not take place.

  • PDF

Synthesis of Polybenzimidazole Containing Bulky Side Group (Bulky Side Group을 갖는 폴리벤즈이미다졸의 합성)

  • 안병현;김원호
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.796-802
    • /
    • 2001
  • Novel monomer for polybenzimidazole was prepared and polymerized via aromatic nucleophilic substitution reaction. Thus, N-(4-fluorobenzoyl)-4-methoxy-N'-naphthyl-1,2-phenylenediamine was synthesized from the reaction of 4-methoxy-N-naphthyl-1,2-phenylenediamine and 4-fluorobenzoyl chloride. N-(4-fluorobenzoyl)-4-methoxy-N'-naphthyl-1,2-phenylenediamine was converted to 2-(4-fluorobenzoyl)-5-hydroxy-1-naphthylbenzimidazole by ring closure and demethylation reaction. Polymerization was done in N-cyclohexyl-2-pyrrolidinone (CHP) containing potassium car bonate. The resulting polymer was soluble in N-methyl-2-pyrrolidinone (NMP) and had inherent viscosity of 0.38 dL/g (NMP at $30^{\circ}C$). The glass transition temperature ($T_g$ ) of the polybenzimidazole was $270^{\circ}C$. The thermogravimetric analysis (TGA) thermograms of this polymer showed 5% weight losses at $550^{\circ}C$ in nitrogen and at $540^{\circ}C$ in air.

  • PDF

Fabrication of Nearly Monodispersed Silica Nanoparticles by Using Poly(1-vinyl-2-pyrrolidinone) and Their Application to the Preparation of Nanocomposites

  • Chung, You-Sun;Jeon, Mi-Young;Kim, Chang-Keun
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • To fabricate dental nanocomposites containing finely dispersed silica nanoparticles, nearly monodispersed silica nanoparticles smaller than 25 nm were synthesized without forming any aggregates via a modified sol-gel process. Since silica nanoparticles synthesized by the Stober method formed aggregates when the particle size is smaller than 25 nm, the synthetic method was modified by changing the reaction temperature and adding poly(1-vinyl-2-pyrrolidinone) (PVP) to the reaction mixture. The size of the formed silica nanoparticles was reduced by increasing the reaction temperature or adding PVP. Furthermore, the formation of aggregates with primary silica nanoparticles smaller than 25 nm was prevented by increasing the amount of PVP added to the reaction mixture. To enhance the dispersion of the silica particles in an organic matrix, the synthesized silica nanoparticles were treated with 3-methacryloxypropyltrimethoxysilane ($\gamma$-MPS). A dental nanocomposite containing finely dispersed silica nanoparticles could be produced by using the surface-treated silica nanoparticles.

Diastereoselective Synthesis of Polysubstituted Pyrrolidinone as a Key Intermediate for the Anticancer Agents by Palladium(II)­Catalyzed Carboxylation

  • Choi Dong-Rack;Lee Kee-Young;Chung Yun-Sung;Joo Jae-Eun;Kim Yong-Hyun;Oh Chang-Young;Lee Yiu-Suk;Ham Won-Hun
    • Archives of Pharmacal Research
    • /
    • v.28 no.2
    • /
    • pp.151-158
    • /
    • 2005
  • Palladium(II)-catalyzed carboxylation of chiral olefins 6a-d has been examined under various conditions. In the weak basic condition ($K_{2}CO_3$), 7a-d were obtained in good yields. Alternatively, in the strong basic condition, pyrrolidinones 8a-d were obtained resulting in excellent yields and with high diastereoselectivity.

Suppression of the TRIF-dependent signaling pathway of toll-like receptors by (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate

  • Park, Se-Jeong;Park, Hye-Jeong;Kim, Soo-Jung;Shin, Hwa-Jeong;Min, In-Soon;Koh, Kwang-Oh;Kim, Dae-Young;Youn, Hyung-Sun
    • BMB Reports
    • /
    • v.44 no.7
    • /
    • pp.468-472
    • /
    • 2011
  • Toll-like receptors (TLRs) are pattern recognition receptors that recognize molecular structures derived from microbes and initiate innate immunity. TLRs have two downstream signaling pathways, the MyD88- and TRIF-dependent pathways. Dysregulated activation of TLRs is closely linked to increased risk of many chronic diseases. Previously, we synthesized fumaryl pyrrolidinone, (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate (IPOP), which contains a fumaric acid isopropyl ester and pyrrolidinone, and demonstrated that it inhibits the activation of nuclear factor kappa B by inhibiting the MyD88-dependent pathway of TLRs. However, the effect of IPOP on the TRIF-dependent pathway remains unknown. Here, we report the effect of IPOP on signal transduction via the TRIF-dependent pathway of TLRs. IPOP inhibited lipopolysaccharide- or polyinosinic-polycytidylic acidinduced interferon regulatory factor 3 activation, as well as interferon-inducible genes such as interferon inducible protein-10. These results suggest that IPOP can modulate the TRIF-dependent signaling pathway of TLRs, leading to decreased inflammatory gene expression.

Study of Reaction Products and Color Changes in Glutamine-Glucose Model System during Heating (Glutamine-Glucose Model System에서 가열조건별 반응생성물과 색의 변화)

  • Lee, Young-Guen
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.7
    • /
    • pp.881-885
    • /
    • 2006
  • The product formation and changes in color of glucose/glutamine model system were investigated in relation to heating temperature and time. The mixtures of glucose and glutamine in equal molar ratio were heated at 125, 150 and $175^{\circ}C$ for 10, 20 and 30 minute, respectively. Acetic acid, butanoic acid, 2-butenoic acid, di-(2-cthylhexyl)phthalate, 2,3-dihydro-3,5-dihydroxy-6-methly-4H-pyran-4-one and 5-hydroxymethylfurfural were identified as a major compounds, and 1,3-dimethylbenzene, 2-ethylhexanol, furfural, 5-methylfurfural, 2-pyrrolidinone, and 2,6-di(t-butyl)-4-hydroxy-4-methyl-2.5-cyclohexadien-1-one as 6 minor compounds by using GC/MS. The contents of acetic acid, 2-ehylhexanol and 2-pyrrolidinone increased with increased heating temperature and time, whereas the formation of the other 9 compounds increased up th heating conditions of $150^{\circ}C$ for 10 or 20 min or $175^{\circ}C$ for 10 min, and decreased dramatically with heating above those conditions. Color parameter $L^*$ decreased with increasing heating conition, resulting in dark brown color in final products. Changes of redness parameter $a^*$ and yellowness $b^*$ showed similar to those of the contents of 9 compounds mentioned as above.

Synthesis and Antibacterial Activity of Novel 2-Oxo-pyrrolidinyl Oxazolidinones

  • Bhattarai, Deepak;Lee, Sun-Hee;Kim, Hyeong-Kyu;Kang, Soon-Bang;Pae, Ae-Nim;Kim, Eunice Eun-Kyeong;Oh, Taeg-Won;Cho, Sang-Nae;Keum, Gyo-Chang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1310-1316
    • /
    • 2012
  • Novel antibacterial oxazolidinones bearing pyrrolidinone ring system at the C-5 side chain were synthesized and their in vitro antibacterial activities were evaluated. Most of the synthesized oxazolidinones showed good antibacterial activity against the Gram-positive and Gram-negative bacteria tested.

Effects of Electrochemical Reduction Reactions on the Biodegradation of Recalcitrant Organic Compounds (ROCs) and Bacterial Community Diversity

  • Lee, Woo-Jin;Lee, Jong-Kwang;Chung, Jin-Wook;Cho, Yong-Ju;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1230-1239
    • /
    • 2010
  • Five bacterial species, capable of degrading the recalcitrant organic compounds (ROCs) diethyleneglycol monomethylether (DGMME), 1-amino-2-propanol (APOL), 1-methyl-2-pyrrolidinone (NMP), diethyleneglycol monoethylether (DGMEE), tetraethyleneglycol (TEG), and tetrahydrothiophene 1,1-dioxide (sulfolane), were isolated from an enrichment culture. Cupriavidus sp. catabolized $93.5{\pm}1.7$ mg/l of TEG, $99.3{\pm}1.2$ mg/l of DGMME, $96.1{\pm}1.6$ mg/l of APOL, and $99.5{\pm}0.5$ mg/l of NMP in 3 days. Acineobacter sp. catabolized 100 mg/l of DGMME, $99.9{\pm}0.1$ mg/l of NMP, and 100 mg/l of DGMEE in 3 days. Pseudomonas sp.3 catabolized $95.7{\pm}1.2$ mg/l of APOL and $99.8{\pm}0.3$ mg/l of NMP. Paracoccus sp. catabolized $98.3{\pm}0.6$ mg/l of DGMME and $98.3{\pm}1.0$ mg/l of DGMEE in 3 days. A maximum $43{\pm}2.0$ mg/l of sulfolane was catabolized by Paracoccus sp. in 3 days. When a mixed culture composed of the five bacterial species was applied to real wastewater containing DGMME, APOL, NMP, DGMEE, or TEG, 92~99% of each individual ROC was catabolized within 3 days. However, at least 9 days were required for the complete mineralization of sulfolane. Bacterial community diversity, analyzed on the basis of the TGGE pattern of 16S rDNA extracted from viable cells, was found to be significantly reduced in a conventional bioreactor after 6 days of incubation. However, biodiversity was maintained after 12 days of incubation in an electrochemical bioreactor. In conclusion, the electrochemical reduction reaction enhanced the diversity of the bacterial community and actively catabolized sulfolane.