Fabrication of Nearly Monodispersed Silica Nanoparticles by Using Poly(1-vinyl-2-pyrrolidinone) and Their Application to the Preparation of Nanocomposites

  • Chung, You-Sun (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Jeon, Mi-Young (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Kim, Chang-Keun (School of Chemical Engineering and Materials Science, Chung-Ang University)
  • Published : 2009.01.25

Abstract

To fabricate dental nanocomposites containing finely dispersed silica nanoparticles, nearly monodispersed silica nanoparticles smaller than 25 nm were synthesized without forming any aggregates via a modified sol-gel process. Since silica nanoparticles synthesized by the Stober method formed aggregates when the particle size is smaller than 25 nm, the synthetic method was modified by changing the reaction temperature and adding poly(1-vinyl-2-pyrrolidinone) (PVP) to the reaction mixture. The size of the formed silica nanoparticles was reduced by increasing the reaction temperature or adding PVP. Furthermore, the formation of aggregates with primary silica nanoparticles smaller than 25 nm was prevented by increasing the amount of PVP added to the reaction mixture. To enhance the dispersion of the silica particles in an organic matrix, the synthesized silica nanoparticles were treated with 3-methacryloxypropyltrimethoxysilane ($\gamma$-MPS). A dental nanocomposite containing finely dispersed silica nanoparticles could be produced by using the surface-treated silica nanoparticles.

Keywords

References

  1. A. K. Viswanath, Encyclopedia of Nanoscience and Nanotechnology, H. S. Nalwa, ed., American Scientific Publishers, Stevenson Ranch, CA, 2004, vol. 7, p. 105
  2. D. S. Kim, M. D. Guiver, M. Y. Seo, H. I. Cho, D. H. Kim, J. W. Rhim, G. Y. Moon, and S. Y. Nam, Macromol. Res., 15, 412 (2007) https://doi.org/10.1007/BF03218807
  3. G. P. Kim, Y. S. Jung, S. B. Yoon, D. W. Kim, and S. H. Beack, Macromol. Res., 15, 693 (2007) https://doi.org/10.1007/BF03218952
  4. K. C. Lee and S. Y. Lee, Macromol. Res., 15, 244 (2007) https://doi.org/10.1007/BF03218783
  5. R. K. Iler, The Chemistry of Silica, Wiley, New York, 1979, p. 1
  6. C. Payne, The Colloid Chemistry of Silica, H. Bergna, ed., American Chemical Society, Washington, DC, 1994, p. 124
  7. G. H. Bogush and C. F. Zukoski IV, J. Colloid Interf. Sci., 142, 1 (1991) https://doi.org/10.1016/0021-9797(91)90029-8
  8. G. H. Bogush and C. F. Zukoski IV, J. Colloid Interf. Sci., 142, 19 (1991) https://doi.org/10.1016/0021-9797(91)90030-C
  9. M. Donald and D. W. Orson, J. Am. Dent. Assoc., 92, 1189 (1976) https://doi.org/10.14219/jada.archive.1976.0177
  10. P. Leonard and M. C. Ellse, J. Am. Dent. Assoc., 92, 1195 (1976) https://doi.org/10.14219/jada.archive.1976.0156
  11. I. C. Schoonover and W. Sounder, J. Am. Dent. Assoc., 28, 1278 (1941) https://doi.org/10.14219/jada.archive.1941.0194
  12. E. L. Pashley, R. W. Comer, E. E. Parry, and D. H. Pashley, Oper. Dent., 16, 82 (1991)
  13. M. Staninec and M. Holt, J. Prosthet. Dent., 59, 397 (1988) https://doi.org/10.1016/0022-3913(88)90030-3
  14. S. C. Bayne, H. O. Heymann, and E. J. Swift, J. Am. Dent. Assoc., 125, 687 (1994)
  15. K. H. Kim, J. L. Ong, and O. Okuno, J. Prosth. Dent., 87, 642 (2002) https://doi.org/10.1067/mpr.2002.125179
  16. D. Cui and H. Gao, Biotechnol. Prog., 19, 683 (2003) https://doi.org/10.1021/bp025791i
  17. S. Suzuki, K. L. Leinfelder, K. Kaway, and Y. Tsuchtani, Am. J. Dent., 8, 173 (1995)
  18. B. A. M. Venhoven, A. J. de Gee, A. Werner, and C. L. Davidso, Biomaterials, 17, 735 (1996) https://doi.org/10.1016/0142-9612(96)86744-5
  19. K. D. Jorgensen and E. Asmussen, Quintessence Int., 9, 73 (1978)
  20. S. C. Bayne, D. F. Taylor, and H. O. Heymann, Dent. Mater., 8, 305 (1995)
  21. X. S. Xing and R. K. Y. Li, Wear, 256, 21 (2004) https://doi.org/10.1016/S0043-1648(03)00220-5
  22. W. G. Sawyer, D. Freudenberg, M. Bhimaraj, and L. Schadler, Wear, 254, 573 (2003) https://doi.org/10.1016/S0043-1648(03)00252-7
  23. S. B. Mitra, D. Wu, and B. N. Holmes, J. Am. Dent. Assoc., 134, 1382 (2003) https://doi.org/10.14219/jada.archive.2003.0054
  24. G. Shi, M. Q. Zhang, M. Z. Rong, B. Wetzel, and K. Friedrich, Wear, 254, 784 (2003) https://doi.org/10.1016/S0043-1648(03)00190-X
  25. J. W. Kim and C. K. Kim, Polymer(Korea), 30, 75 (2006)
  26. W. Stober, A. Fink, and E. Bohn, J. Colloid Interf. Sci., 26, 62 (1968) https://doi.org/10.1016/0021-9797(68)90272-5
  27. G. H. Bogush and C. F. Zukoski IV, J. Colloid Interf. Sci., 142, 1 (1991) https://doi.org/10.1016/0021-9797(91)90029-8
  28. G. H. Bogush and C. F. Zukoski IV, J. Colloid Interf. Sci., 142, 19 (1991) https://doi.org/10.1016/0021-9797(91)90030-C
  29. A. K. Van Helden, J. W. Jansen, and A. Vrij, J. Colloid Interf. Sci., 142, 354 (1981)
  30. G. H. Bogush, M. A. Tracy, and C. F. Zukoski IV, J. Non-Cryst. Solid, 104, 95 (1988) https://doi.org/10.1016/0022-3093(88)90187-1
  31. K. S. Rao, K. El-Hami, E. Kodaki, K. Matsushige, and K. Makino, J. Colloid Interf. Sci., 289, 125 (2005) https://doi.org/10.1016/j.jcis.2005.02.019
  32. H. Boukari, G. G. Lang, and T. M. Harris, J. Colloid Interf. Sci., 229, 129 (2000) https://doi.org/10.1006/jcis.2000.7007
  33. D. L. Green, J. S. Lin, Y. Lam, M. Z. Hu, D. W. Schaefer, and T. M. Harris, J. Colloid Interf. Sci., 266, 346 (2003) https://doi.org/10.1016/S0021-9797(03)00610-6
  34. H. Giesche, J. Eur. Ceram. Soc., 14, 205 (1994) https://doi.org/10.1016/0955-2219(94)90088-4
  35. K. Osseo-Asare and F. J. Arriagada, Colloid Surface, 50, 321 (1990) https://doi.org/10.1016/0166-6622(90)80273-7
  36. S. Koenen and C. G. DeKruif, J. Colloid Interf. Sci., 124, 104 (1988) https://doi.org/10.1016/0021-9797(88)90330-X
  37. S. Kim, J. Jang, and O. Kim, Polym. Eng. Sci., 38, 1142 (1998) https://doi.org/10.1002/pen.10281
  38. O. Kim, J. Chun, Y. Kim, and W. J. Shim, J. Ind. Eng. Chem., 9, 679 (2003)
  39. C. G. Tan, B. D. Bowen, and N. Epstein, J. Colloid Interf. Sci., 118, 290 (1987) https://doi.org/10.1016/0021-9797(87)90458-9