DOI QR코드

DOI QR Code

Effects of Electrochemical Reduction Reactions on the Biodegradation of Recalcitrant Organic Compounds (ROCs) and Bacterial Community Diversity

  • Lee, Woo-Jin (Department of Biological Engineering, Seokyeong University) ;
  • Lee, Jong-Kwang (R&D Center, Samsung Engineering Company Ltd.) ;
  • Chung, Jin-Wook (R&D Center, Samsung Engineering Company Ltd.) ;
  • Cho, Yong-Ju (R&D Center, Samsung Engineering Company Ltd.) ;
  • Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
  • Received : 2009.10.14
  • Accepted : 2010.05.04
  • Published : 2010.08.28

Abstract

Five bacterial species, capable of degrading the recalcitrant organic compounds (ROCs) diethyleneglycol monomethylether (DGMME), 1-amino-2-propanol (APOL), 1-methyl-2-pyrrolidinone (NMP), diethyleneglycol monoethylether (DGMEE), tetraethyleneglycol (TEG), and tetrahydrothiophene 1,1-dioxide (sulfolane), were isolated from an enrichment culture. Cupriavidus sp. catabolized $93.5{\pm}1.7$ mg/l of TEG, $99.3{\pm}1.2$ mg/l of DGMME, $96.1{\pm}1.6$ mg/l of APOL, and $99.5{\pm}0.5$ mg/l of NMP in 3 days. Acineobacter sp. catabolized 100 mg/l of DGMME, $99.9{\pm}0.1$ mg/l of NMP, and 100 mg/l of DGMEE in 3 days. Pseudomonas sp.3 catabolized $95.7{\pm}1.2$ mg/l of APOL and $99.8{\pm}0.3$ mg/l of NMP. Paracoccus sp. catabolized $98.3{\pm}0.6$ mg/l of DGMME and $98.3{\pm}1.0$ mg/l of DGMEE in 3 days. A maximum $43{\pm}2.0$ mg/l of sulfolane was catabolized by Paracoccus sp. in 3 days. When a mixed culture composed of the five bacterial species was applied to real wastewater containing DGMME, APOL, NMP, DGMEE, or TEG, 92~99% of each individual ROC was catabolized within 3 days. However, at least 9 days were required for the complete mineralization of sulfolane. Bacterial community diversity, analyzed on the basis of the TGGE pattern of 16S rDNA extracted from viable cells, was found to be significantly reduced in a conventional bioreactor after 6 days of incubation. However, biodiversity was maintained after 12 days of incubation in an electrochemical bioreactor. In conclusion, the electrochemical reduction reaction enhanced the diversity of the bacterial community and actively catabolized sulfolane.

Keywords

References

  1. Aamand, J., C. Jorgensen, E. Arvin, and B. K. Jensen. 1989. Microbial adaptation to degradation of hydrocarbons in polluted and unpolluted groundwater. J. Contam. Hydrol. 4: 299-312. https://doi.org/10.1016/0169-7722(89)90030-2
  2. Aelion, C. M., C. M. Swindoll, and F. K. Pfaender. 1987. Adaptation to and biodegradation of xenobiotic compounds by microbial communities from a pristine aquifer. Appl. Environ. Microbiol. 53: 2212-2217.
  3. Aelion, C. M., D. C. Dobbins, and F. K. Pfaender. 1989. Adaptation of aquifer microbial communities to the biodegradation of xenobiotic compounds: Influence of substrate concentration and preexposure. Appl. Microbiol. Biotechnol. 8: 75-86.
  4. Alexander, M. 1981. Biodegradation of chemicals of environmental concern. Science 211: 132-138. https://doi.org/10.1126/science.7444456
  5. Alexander, M. 1985. Biodegradation of organic chemicals. Environ. Sci. Technol. 19: 106-111. https://doi.org/10.1021/es00132a602
  6. Asaoka, S., T. Yamamoto, S. Kondo, and S. Hayakawa. 2009. Removal of hydrogen sulfide using crushed oyster shell from pore water to remediate organically enriched coastal marine sediments. Bioresource Technol. 100: 4127-4132. https://doi.org/10.1016/j.biortech.2009.03.075
  7. Bachmann, A., W. de Bruin, J. C. Jumelet, H. H. N. Rijnaarts, and A. J. B. Zehnder. 1988. Aerobic biomineralization of alphahexachlorocyclohexane in contaminated soil. Appl. Environ. Microbiol. 54: 548-554.
  8. Barkay, T. and H. Pritchard. 1988. Adaptation of aquatic micriobial communities to pollutant stress. Microbiol. Sci. 5: 165-169.
  9. Becker, J. G., G. Berardesco, B. E. Rittmann, and D. A. Stahl. 2006. Effects of endogenous substrates on adaptation of anaerobic microbial communities to 3-chlorobenzoate. Appl. Environ. Microbiol. 72: 449-456. https://doi.org/10.1128/AEM.72.1.449-456.2006
  10. Behki, R. M. and S. U. Khan. 1986. Degradation of atrazine by Pseudomonas: N-dealkylation and dehalogenation of atrazine and its metabolites. J. Agric. Food Chem. 34: 746-749. https://doi.org/10.1021/jf00070a039
  11. Chaudhry, G. R. and G. H. Huang. 1988. Degradation of bromacil by a Pseudomonas sp. Appl. Environ. Microbiol. 54: 2203-2207.
  12. Cook, A. M., H. Grossenbacher, and R. Hüter. 1983. Isolation and cultivation of microbes with biodegradative potential. Experientia 39: 1101-1198. https://doi.org/10.1007/BF01943129
  13. Dec, J. and J. M. Bollg. 1988. Microbial release and degradation of catechol and chlorophenols bound to synthetic humic acid. Soil Sci. Soc. Am. J. 52: 1366-1371. https://doi.org/10.2136/sssaj1988.03615995005200050030x
  14. Fournier, J. C., P. Codaccioni, G. Soulas, and C. Repiquet. 1981. Soil adaptation to 2,4-D degradation in relation to the application rates and the metabolic behavior of the degrading microflora. Chemosphere 10: 977-984. https://doi.org/10.1016/0045-6535(81)90097-7
  15. Grady, C. P. L. 1985. Biodegradation: Its measurement and microbiological basis. Biotechnol. Bioeng. 27: 660-674. https://doi.org/10.1002/bit.260270516
  16. Greene, E. A., L. M. Gieg, D. L. Coy, and P. M. Fedorak. 1998. Sulfolane biodegradation potential in aquifer sediments at sour natural gas plant sites. Wat. Res. 32: 3680-3688. https://doi.org/10.1016/S0043-1354(98)00139-0
  17. Greene, E. A. and P. M. Federak. 1998. A differential medium for the isolation and enumeration of sulfolane-degrading bacteria. J. Microbiol. Methods 33: 255-262. https://doi.org/10.1016/S0167-7012(98)00059-1
  18. Hayes, M. K. and G. T. Tayleor. 2006. Vertical distributions of thiosulfate and sulfite in the Cariaco basin. Limnol. Oceanogr. 51: 280-287 https://doi.org/10.4319/lo.2006.51.1.0280
  19. Hwang, H-.M., R. E. Hodson, and D. L. Lewis. 1989. Microbial degradation kinetics of toxic organic chemicals over a wide range of concentrations in natural aquatic systems. Environ. Toxicol. Chem. 8: 65-74. https://doi.org/10.1002/etc.5620080108
  20. Hwang, T. S., B. K. Na, H. T. Tran, D. H. Ahn, and D. H. Park. 2008. A novel three-compartmented electrochemical bioreactor for enrichment of strict anaerobes based on metabolite production. Biotechnol. Bioprocess Eng. 13: 677-682. https://doi.org/10.1007/s12257-008-0054-z
  21. Izumi, Y., T. Oshiro, H. Ogino, Y. Hine, and M. Shimao. 1994. Selective desulfurization by Rhodococcus erythropolis D-1. Appl. Environ. Microbiol. 60: 223-226.
  22. Jokela, J., J. Pellinen, and M. Salkinoja-Salonen. 1987. Initial steps in the pathway for bacterial degradation of two tetrameric liginin model compounds. Appl. Environ. Microbiol. 53: 2642-2649.
  23. Kang, H. S., B. K. Na, and D. H Park. 2007. Oxidation of butane to butanol coupled to electrochemical redox reaction of $NAD^{+}$/NADH. Biotech. Lett. 29: 1277-1280. https://doi.org/10.1007/s10529-007-9385-7
  24. Katsuyama, C., S. Nakaoka, Y. Takeuchi, K. Tago, M. Hayatsu, and K. Kato. 2009. Complementary cooperation between syntrophic bacteria in pesticide degradation. J. Theor. Biol. 256: 644-654. https://doi.org/10.1016/j.jtbi.2008.10.024
  25. Kirimura, K., T. Furuya, R. Sato, Y. Ishii, K. Kino, and S. Usami. 2002. Biodesulfurization of naphthothiophene and benzothiophene through selective cleavage of carbon-sulfur bonds by Rhodococcus sp. strain WU-K2R. Appl. Environ. Microbiol. 68: 3867-3872. https://doi.org/10.1128/AEM.68.8.3867-3872.2002
  26. Kurath, G. and R. Y. Morita. 1983. Starvation-survival physiological studies of a marine Pseudomonas sp. Appl. Environ. Microbiol. 45: 1206-1211.
  27. Lee, S. J., Y. W. Lee, J. Chung, J. K. Lee, J. Y. Lee, D. Jahng, Y. Cha, and Y. Yu. 2008. Reuse of low concentrated electronic wastewater using selected microbe immobilized cell system. Water Sci. Technol. 57: 1191-1197. https://doi.org/10.2166/wst.2008.246
  28. Lewis, D. L., H. P. Kollig, and R. E. Hodson. 1986. Nutrient limitation and adaptation of microbial populations to chemicals transformations. Appl. Environ. Microbiol. 55: 2773-2778.
  29. Linkfield, T. G., J. M. Suflita, and J. M. Tiedjei. 1989. Characterization of the acclimation period before anaerobic dehalogenation of halobenzoates. Appl. Environ. Microbiol. 55: 2773-2778.
  30. Lorenz., M. G., B. W. Aardema, and W. Wackernagel. 1988. Highly efficient genetic transformation of Bacillus subtilis attached to sand grains. J. Gen. Microbiol. 134: 107-112.
  31. Madsen, E. L., J. L. Sinclair, and W. C. Ghiorse. 1991. In situ biodegradation: Microbiological patterns in a contaminated aquifer. Science 252: 830-833. https://doi.org/10.1126/science.2028258
  32. Nelson, M. I. and A. Holder. 2009. A fundamental analysis of continuous flow bioreactor models governed by Contois kinetics. II. Reactor cascade. Chem. Eng. J. 149: 406-416. https://doi.org/10.1016/j.cej.2009.01.028
  33. Nishino, S. F. and J. C. Spain. 1993. Cell density-dependent adaptation of Pseudomonas putida to biodegradation of pnitrophenol. Environ. Sci. Technol. 27: 489-494. https://doi.org/10.1021/es00040a006
  34. Ogunseitan, O. A., I. K. Delgado, Y. L. Tsai, and B. H Olson. 1991. Effect of 2-hydroxybenzoate on the maintenance of naphthalene-degrading pseudomonads in seeded and unseeded soil. Appl. Environ. Microbiol. 57: 2873-2879.
  35. Omori, T., L. Monna, Y. Saiki, K. Kasuga, and T. Kodama. 1992. Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1. Appl. Environ. Microbiol. 58: 911-915.
  36. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Acinetobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410.
  37. Park, D. H., M. Laivenieks, M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 66: 2912-2917.
  38. Schell, J. A. 1985. Transcriptional control of the nah and sal hydrocarbon degradation operons by the nahr gene product. Gene 36: 301-309. https://doi.org/10.1016/0378-1119(85)90185-4
  39. Shin, H. S. and D. G. Jung. 2004. Determination of icing inhibitors (ethylene glycol monomethyl ether and diethylene glycol monomethyl ether) in ground water by gas chromatography-mass spectrometry. Bull. Kor. Chem. Soc. 25: 806-808. https://doi.org/10.5012/bkcs.2004.25.6.806
  40. Spain, J. C. and P. A. van Veld. 1983. Adaptation of natural microbial communities to degradation of xenobiotic compounds: Effects of concentration, exposure, time, inoculum, and chemical structure. Appl. Environ. Microbiol. 45: 428-435.
  41. Swindoll, C. M., C. M. Aelion, and F. K. Pfaender. 1988. Influence of inorganic and organic nutrients on aerobic biodegradation and on the adaptation response of subsurface microbial communities. Appl. Environ. Microbiol. 54: 212-217.
  42. Thomsson, E., C. Larsson, E. Albers, A. Nilsson, C. J. Franzen, and L. Gustafsson. 2003. Carbon starvation can induce energy deprivation and loss of fermentativity in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69: 3251-3257. https://doi.org/10.1128/AEM.69.6.3251-3257.2003
  43. Van der Meer, J. R., W. Roelofsen, G. Schraa, and A. J. B. Zehner. 1987. Degradation of low concentrations of dichlorobenzenes and 1,2,4-trichlorobenzene by Pseudomonas sp. strain P51 in monstrile soil column. FEMS Microbiol. Ecol. 45: 333-341.
  44. Van der Meer, J. R., W. De Vos, S. Harayama, and A. J. B. Zehnder. 1992. Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56: 677-694.
  45. Wei, X. and W. D. Bauer. 1998. Starvation-induced changes in motility, chemotaxis, and flagellation of Rhizobium meliloti. Appl. Environ. Microbiol. 64: 1708-1714.
  46. Wiggins, B. A., S. H. Jones, and M. Alexander. 1987. Explanations for the acclimation period preceding the mineralization of organic chemicals in aquatic environments. Appl. Environ. Microbiol. 53: 791-796.
  47. Wilson, J. T., J. F. McNabb, J. W. Cochran, T. H. Wang, M. B. Tomson, and P. B. Bedient. 1985. Influence of microbial adaptation on the fate of organic pollutants in ground water. Environ. Toxicol. Chem. 4: 721-726.

Cited by

  1. Mineralization of Petroleum Contaminated Wastewater by Co-Culture of Petroleum-Degrading Bacterial Community and Biosurfactant-Producing Bacterium vol.2, pp.7, 2010, https://doi.org/10.4236/jep.2011.27102
  2. Estimation on metabolic pathway of Pseudomonas sp. SMIC-3 for 1-methyl-2-pyrrolidinone based on physiological and biochemical analyses vol.31, pp.3, 2014, https://doi.org/10.1007/s11814-013-0231-4
  3. Novel Metabolic Pathway for N-Methylpyrrolidone Degradation in Alicycliphilus sp. Strain BQ1 vol.84, pp.1, 2018, https://doi.org/10.1128/aem.02136-17
  4. Integration of aerobic granulation and UV/H2O2 processes in a continuous flow system for the degradation of sulfolane in contaminated water vol.6, pp.6, 2020, https://doi.org/10.1039/c9ew01048c