• Title/Summary/Keyword: Pyroprocessing of spent fuel

Search Result 66, Processing Time 0.038 seconds

Investigation of Pyroprocessing Concept and Its Applicability as an Alternative Technology for Conventional Fuel Cycle (고온전해분리 기술의 개요 및 기존 핵연료주기 대체 기술로서의 적합성 검토)

  • Yoo, Jae-Hyung;Lee, Byung-Jik;Lee, Han-Soo;Kim, Eung-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.283-295
    • /
    • 2007
  • The technical feasibility of a pyroprocessing of PWR spent fuels to recover nuclear fuel materials, uranium and transuranic elements group(TRU), was examined in this study. Also its applicability as a new fuel cycle technology in terms of non-proliferation was investigated. First, various unit processes were combined to a pyroprocess. Then the flow aspects of such materials of issue as uranium, transuraniums, rare earth, noble metals and heat generating elements were examined on the flowsheet, which was obtained by the assumptions on the basis of various experimental results in this work or separation data collected from literatures. Consequently, the calculated results of the material balance for the whole process showed that uranium and TRU could be recovered as products by 98.0 % and 97.0 %, respectively, from a PWR spent fuel while removing the other elemental groups into radioactive wastes. On the one hand, the TRU product was found to emit a considerable amount of ${\gamma}$-ray as well as neutrons favorably contributing to the strategy of proliferation resistance.

  • PDF

Recent Progress in Waste Treatment Technology for Pyroprocessing at KAERI (파이로 공정폐기물 처리기술의 최근 KAERI 연구동향)

  • Park, Geun-Il;Jeon, Min Ku;Choi, Jung-Hoon;Lee, Ki-Rak;Han, Seung Youb;Kim, In Tae;Cho, Yung-Zun;Park, Hwan-Seo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.279-298
    • /
    • 2019
  • This study comprehensively addresses recent progress at KAERI in waste treatment technology to cope with waste produced by pyroprocessing, which is used to effectively manage spent fuel. The goal of pyroprocessing waste treatment is to reduce final waste volume, fabricate durable waste forms suitable for disposal, and ensure safe packaging and storage. KAERI employs grouping of fission products recovered from process streams and immobilizes them in separate waste forms, resulting in product recycling and waste volume minimization. Novel aspects of KAERI approach include high temperature treatment of spent oxide fuel for the fabrication of feed materials for the oxide reduction process, and fission product concentration or separation from LiCl or LiCl-KCl salt streams for salt recycling and higher fission-product loading in the final waste form. Based on laboratory-scale tests, an engineering-scale process test is in progress to obtain information on the performance of scale-up processes at KAERI.

Assessment of a U Product purity from Pyroprocessing Spent EBR-II Fuel (EBR-II 사용후핵연료의 건식처리공정에 의한 우라늄의 순도 평가)

  • Lee, Jung-Won;Lee, Han-Soo;Kim, Eung-Ho;Lee, Jong-Hyeon;Vaden, D.;Westphal, B.;Simpson, M.F.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.3
    • /
    • pp.167-174
    • /
    • 2009
  • A comprehensive analysis has been conducted on the purity of the uranium product generated from a pyroprocessing of EBR-II spent fuel. The analysis results were compared to the low-level waste criteria for both ROK and USA under a collaborative program between INL and KAERI. It is found that the US LLW definition does not include the activity from any U isotopes, but the Korean one does. The analysis results show that Pu-239 is the only alpha emitting isotope other than U isotopes that exceed the limit in the EBR-II U product. Pu contamination of the product seems to be drastically reduced in a preliminary test of the modified cathode process, and the further development of the proposed technology may be possible to meet the US LLW criteria.

  • PDF

A preliminary study of pilot-scale electrolytic reduction of UO2 using a graphite anode

  • Kim, Sung-Wook;Heo, Dong Hyun;Lee, Sang Kwon;Jeon, Min Ku;Park, Wooshin;Hur, Jin-Mok;Hong, Sun-Seok;Oh, Seung-Chul;Choi, Eun-Young
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1451-1456
    • /
    • 2017
  • Finding technical issues associated with equipment scale-up is an important subject for the investigation of pyroprocessing. In this respect, electrolytic reduction of 1 kg $UO_2$, a unit process of pyroprocessing, was conducted using graphite as an anode material to figure out the scale-up issues of the C anode-based system at pilot scale. The graphite anode can transfer a current that is 6-7 times higher than that of a conventional Pt anode with the same reactor, showing the superiority of the graphite anode. $UO_2$ pellets were turned into metallic U during the reaction. However, several problems were discovered after the experiments, such as reaction instability by reduced effective anode area (induced by the existence of $Cl_2$ around anode and anode consumption), relatively low metal conversion rate, and corrosion of the reactor. These issues should be overcome for the scale-up of the electrolytic reducer using the C anode.

HOT CELL RENOVATION IN THE SPENT FUEL CONDITIONING PROCESS FACILITY AT THE KOREA ATOMIC ENERGY RESEARCH INSTITUTE

  • YU, SEUNG NAM;LEE, JONG KWANG;PARK, BYUNG SUK;CHO, ILJE;KIM, KIHO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.776-790
    • /
    • 2015
  • Background: The advanced spent fuel conditioning process facility (ACPF) of the irradiated materials examination facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI) has been renovated to implement a lab scale electrolytic reduction process for pyroprocessing. The interior and exterior structures of the ACPF hot cell have been modified under the current renovation project for the experimentation of the electrolytic reduction process using spent nuclear fuel. The most important aspect of this renovation was the installation of the argon compartment within the hot cell. Method: For the design and system implementation of the argon compartment system, a full-scale mock-up test and a three-dimensional (3D) simulation test were conducted in advance. The remodeling and repairing of the process cell (M8a), the maintenance cell (M8b), the isolation room, and their utilities were also planned through this simulation to accommodate the designed argon compartment system. Results and conclusion: Based on the considered refurbishment workflow, previous equipment in the M8 cell, including vessels and pipes, were removed and disposed of successfully after a zoning smear survey and decontamination, and new equipment with advanced functions and specifications were installed in the hot cell. Finally, the operating area and isolation room were also refurbished to meet the requirements of the improved hot cell facility.

Electrochemical Reduction Process for Pyroprocessing (파이로프로세싱을 위한 전해환원 공정기술 개발)

  • Choi, Eun-Young;Hong, Sun-Seok;Park, Wooshin;Im, Hun Suk;Oh, Seung-Chul;Won, Chan Yeon;Cha, Ju-Sun;Hur, Jin-Mok
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.279-288
    • /
    • 2014
  • Nuclear energy is expected to meet the growing energy demand while avoiding CO2 emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide fuel and recycle it. Next-generation fuel cycles demand innovative features such as a reduction of the environmental load, improved safety, efficient recycling of resources, and feasible economics. Pyroprocessing based on molten salt electrolysis is one of the key technologies for reducing the amount of spent nuclear fuel and destroying toxic waste products, such as the long-life fission products. The oxide reduction process based on the electrochemical reduction in a LiCl-$Li_2O$ electrolyte has been developed for the volume reduction of PWR (Pressurized Water Reactor) spent fuels and for providing metal feeds for the electrorefining process. To speed up the electrochemical reduction process, the influences of the feed form for the cathode and the type of anode shroud on the reduction rate were investigated.

Patent Analysis for Pyroprocessing of Spent Nuclear Fuels (사용후핵연료 파이로처리기술의 특허 동향 분석)

  • Yoo, Jae-Hyung;Kim, Jung-Kuk;Lee, Han-Soo;Seo, In-Seok;Kim, Eun-Ka
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.4
    • /
    • pp.247-258
    • /
    • 2011
  • Analysis of foreign and domestic patents for pyroprocessing technology of spent nuclear fuels was carried out in this study. The current status of pyroprocessing technology development in such countries as Korea, USA, Japan and EU was analyzed by classifying the patents for 1975 through 2009 according to registration country, assignee, calendar year and technology area. The major assignees' activity indices were compared in order to find out whether there is any concentrated area of technical details. Technology competitiveness of the countries was also investigated from the information of patent citation number and family size. Furthermore, some essential unit technologies required for the commercialization of pyroprocessing were derived and examined in the aspect of the state of art as well as the trend of technology development.