• Title/Summary/Keyword: Pyrolyzer

Search Result 44, Processing Time 0.017 seconds

Chemical Characteristics of Solid Residues Produced from Acid Hydrolysis of Hybrid Poplar Wood (은수원사시나무의 무기산 가수분해에 의해 생성된 고형 부산물의 화학 구조)

  • Oh, Shinyoung;Kim, Jae-Young;Hwang, Hyewon;Lee, Oh-Kyu;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • In this study, we investigated chemical characteristics of solid residues obtained from inorganic acid hydrolysis of hybrid poplar (Populus alba ${\times}$ glandulosa). Different concentration (72, 36, 18%) of sulfuric acid and hydrochloric acid were used for first hydrolysis step and second hydrolysis step were carried out after equally dilution to 4%. Solid residues after consecutive two step hydrolysis were named to RS72 (Residue from Sulfuric acid 72%), RS36, RS18, as well as RC36 (Residue from hydroChloric acid 36%) and RC18, respectively. The yield of RS decreased from 71.2% to 21.4% with increasing sulfuric acid concentration in the first hydrolysis step, whereas that of RC showed little difference (67.0% to 65.0%), irrespective of hydrochloric acid concentration. The lignin content in solid residue was 23.6% for both of RS36 and RS18, 25.6% for RC36 and 27.3% for RC18, respectively. The results of pyrolyzer-GC/MS showed that 24 cellulose derivatives (Levoglucosan, Furfural) and 21 lignin derivatives (Guaiacol, Syringol) were detected. Thermogravimetric analysis indicated that the yield of char increased and maximum wieght loss rate decreased with increasing lignin portion of solid residue. Therefore, structure of lignin was condensed effectively by sulfuric acid and by high concentration of acid.

Catalytic decomposition of HDPE over Al-MCM-48 using TGA and Py-GC/FID (TGA와 Py-GC/FID를 이용한 Al-MCM-48상에서 HDPE의 촉매(觸媒) 열분해(熱分解))

  • Kim, Young-Min;Kim, Seung-Do;Park, Young-Kwon;Kim, Ji-Man;Jeon, Jong-Ki
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.17-25
    • /
    • 2006
  • Al-MCM-48 was used as a catalyst to decompose high density polyethylene(HDPE). Catalytic activity of Al-MCM-48 was compared with those of Al-MCM-41, Beta, and ZSM-5. Catalytic decomposition rate over Al-MCM-48 was much higher than at of non-catalytic pyrolysis only. Compared to other catalysts, Al-MCM-48 revealed the little higher activation energy value. The progressive deactivation behavior of the catalysts has also studied. ZSM-5 and Al-MCM-48 showed slower deactivation rates than Al-MCM-41 and Beta. Pyrolysis coupled with gas chromatographic separation and flame ionization detection (Py-GC/ FID) was also performed to assess the characteristics of pyrolysis products. ZSM-5 gave a higher fraction of gaseous products ($C_1-C_4$). Al-MCM-41 and Beta produced mainly $C_5-C_{12}$ products. The selectivity to oil product ($C_5-C_{22}$) obtained with Al- MCM-48 is higher an that with the other catalysts employed in this study.

Decreases Nitrous Oxide Emission and Increase Soil Carbon via Carbonized Biomass Application of Orchard Soil (과수원 토양의 탄화물 시용에 따른 아산화질소 발생량 감소와 토양탄소 증가효과)

  • Lee, Sun-il;Kim, Gun-yeob;Choi, Eun-jung;Lee, Jong-sik;Jung, Hyun-cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.2
    • /
    • pp.73-79
    • /
    • 2017
  • BACKGROUND: Carbonized biomass is a carbon-rich solid product obtained by the pyrolysis of biomass. It has been suggested to mitigate climate change through increased carbon storage and reduction of greenhouse gas emission. The objective of this study was to evaluate carbon dioxide ($CO_2$) and nitrous oxide ($N_2O$) emissions from soil after carbonized biomass addition. METHODS AND RESULTS: The carbonized biomass was made from a pyrolyzer, which a reactor was operated about $400{\sim}500^{\circ}C$ for 5 hours. The treatments were consisted of a control without input of carbonized biomass and two levels of carbonized biomass inputs as 6.06 Mg/ha for CB-1 and 12.12 Mg/ha for CB-2. Emissions of $CO_2$ and $N_2O$ from orchard soil were determined using closed chamber for 13 weeks at $25^{\circ}C$ of incubation temperature. It was shown that the cumulative $CO_2$ were $209.4g\;CO_2/m^2$ for CB-1, $206.4g\;CO_2/m^2$ for CB-2 and $214.5g\;CO_2/m^2$ for the control after experimental periods. The cumulative $CO_2$ emission was similar in carbonized biomass input treatment compared to the control. It was appeared that cumulative $N_2O$ emissions were $4,478mg\;N_2O/m^2$ for control, $3,227mg\;N_2O/m^2$ for CB-1 and$ 2,324mg\;N_2O/m^2$ for CB-2 at the end of experiment. Cumulative $N_2O$ emission contents significantly decreased with increasing the carbonized biomass input. CONCLUSION: Consequently the carbonized biomass from byproducts such as pear branch residue could suppress the soil $N_2O$ emission. The results fromthe study imply that carbonized biomass can be utilized to reduce greenhouse gas emission from the orchard field.

Research on Pyrolysis Properties of Waste Plastic Films (폐플라스틱 필름의 열분해특성에 대한 연구)

  • Kim, Young-Min;Lee, Boram;Han, Tae Uk;Kim, Seungdo;Yu, Tae-U;Bang, Byoung Yeol;Kim, Joug-Su;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • Pyrolysis characteristics of waste plastic films were investigated by using a thermogravimetric analysis and pyrolyzer-gas chromatography/mass spectrometry. Thermogravimetric analysis results revealed that the pyrolysis of waste plastic films can be divided into two distinct reactions; (1) the decomposition reaction of starch at between 200 and $370^{\circ}C$ and (2) that of other plastic polymers such as PS, PP, PE at between 370 and $510^{\circ}C$. The kinetic analysis results obtained by using the revised Ozawa method indicated that the apparent activation energy of the pyrolysis reaction of waste plastic films was also changed dramatically according to the different decomposition reactions of two major waste plastic film components. Py-GC/MS results also revealed that the typical pyrolyzates of each polymer in waste plastic films were levoglucosan (starch), terephthalic acid (PET), styrene monomer, dimer, and trimer (PS), methylated alkenes (PP), and triplet peaks (PE) composed of alkadiene/alkene/alkane. The phthalate, used as a polymer additive, was also detected on the pyrogram of waste plastic films mixture.