Catalytic decomposition of HDPE over Al-MCM-48 using TGA and Py-GC/FID

TGA와 Py-GC/FID를 이용한 Al-MCM-48상에서 HDPE의 촉매(觸媒) 열분해(熱分解)

  • Kim, Young-Min (Dept. of Environmental System Engineering, Hallym Univ.) ;
  • Kim, Seung-Do (Dept. of Environmental System Engineering, Hallym Univ.) ;
  • Park, Young-Kwon (Faculty of Environmental Engineering, University of Seoul) ;
  • Kim, Ji-Man (Dept. of Chemistry, Sungkyunkwan University) ;
  • Jeon, Jong-Ki (Dept. of Chemical Engineering, Kongju University)
  • 김영민 (한림대학교 환경시스템공학과) ;
  • 김승도 (한림대학교 환경시스템공학과) ;
  • 박영권 (서울시립대학교 환경공학부) ;
  • 김지만 (성균관대학교 화학과) ;
  • 전종기 (공주대학교 화학공학부)
  • Published : 2006.10.27

Abstract

Al-MCM-48 was used as a catalyst to decompose high density polyethylene(HDPE). Catalytic activity of Al-MCM-48 was compared with those of Al-MCM-41, Beta, and ZSM-5. Catalytic decomposition rate over Al-MCM-48 was much higher than at of non-catalytic pyrolysis only. Compared to other catalysts, Al-MCM-48 revealed the little higher activation energy value. The progressive deactivation behavior of the catalysts has also studied. ZSM-5 and Al-MCM-48 showed slower deactivation rates than Al-MCM-41 and Beta. Pyrolysis coupled with gas chromatographic separation and flame ionization detection (Py-GC/ FID) was also performed to assess the characteristics of pyrolysis products. ZSM-5 gave a higher fraction of gaseous products ($C_1-C_4$). Al-MCM-41 and Beta produced mainly $C_5-C_{12}$ products. The selectivity to oil product ($C_5-C_{22}$) obtained with Al- MCM-48 is higher an that with the other catalysts employed in this study.

본 연구는 Al-MCM-48을 이용하여 HDPE를 촉매 분해하는 것으로, Al-MCM-48의 촉매 활성을 Al-MCM-41, Beta, ZSM-5와 비교하였다. Al-MCM-48를 사용한 열분해 활성은 무촉매 열분해의 활성보다 매우 높았다. 다른 촉매와 비교했을 때 Al-MCM-48의 활성화 에너지는 거의 차이가 없었다. 촉매의 점진적인 비활성화 경향도 조사하였다. ZSM-5와 Al-MCM-48은 Al-MCM-41과 Beta보다 비활성화 경향이 낮았다. Py-GC/FID(pyrolyzer)를 이용하여 열분해 생성물의 특성에 대하여 분석하였다. 그 결과 ZSM-5 촉매를 사용한 경우에는 $C_1-C_4$ 범위의 기상 생성물이 많이 생성되었다. Al-MCM-41과 Beta를 사용한 경우에는 주로 $C_5-C_{12}$ 범위의 화합물이 생성되었다. Al-MCM-48은 다른 촉매들에 비해 $C_5-C_{22}$ 범위의 오일 생성물에 대해서 높은 선택도를 나타내었다.

Keywords

References

  1. 환경부 통계자료, 2001-2004: 전국 폐기물 발생 및 처리 현황
  2. 김승도,2002: 저온열분해를 이용한 폐어망의 재활용 기술개발 산업, 해양수상부 보고서
  3. 박영권, 김주식, 최진희, 전종기, 김승도, 김승수, 김지만, 유경선, 2003: 플라스틱 촉매 열분해에 대한 고찰, 한국폐기물학회지, 20(6), pp.565-584
  4. Park, D.W., Hwang, E.Y., Kim, J.R., Choi, J.K., Kim, Y.A. and Woo, H.C., 1999: Catalytic degradation of polyethylene over solid acid catalyst, Polymer Degradation and Stability, 65, pp.193-198 https://doi.org/10.1016/S0141-3910(99)00004-X
  5. Aguado, J., Serrano, D.P., Escola, J.M., Garagorri, E. and Fernandez, J.A., 2000: Catalytic conversion of polyethylenes into fuels over zeolite beta, Polymer Degradation and Stability, 69, pp.11-16 https://doi.org/10.1016/S0141-3910(00)00023-9
  6. 장은석, 김승도, 김영민, Xingfan, 박영권, 옥곤, 2003: 활성탄 접촉 조건에서의 n-Tetrdecane의 열분해 반응특성에 대한 연구, 한국폐기물학회지, 20(4), pp.404-414
  7. Gobin, K. and Manos, G, 2004: Thermogravimetric study of polymer catalytic degradation over microporous materials, Polymer Degradation and Stability, 86, pp.225-231 https://doi.org/10.1016/j.polymdegradstab.2004.05.001
  8. Marcilla, A.; Beltran, M.L, Hernandez, F. and Navarro, R., 2004: HZSM5 and HUSY deactivation during the catalytic pyrolysis of polyethylene, Applied Catalysis A: General, 278, pp.37-43 https://doi.org/10.1016/j.apcata.2004.09.023
  9. Lin, L.H., Yang, M.H., Yeh, T.F. and Ger. M.D., 2004: Catalytic degradation of high density polyethylene over mesoporous and microporous catalysts in a fluidsed-bed reactor, Polymer Degradation and Stability, 86, pp.121-128 https://doi.org/10.1016/j.polymdegradstab.2004.02.015
  10. Aguado, J., Serrano, D.P., Romero, M.D. and Escola, J.M., 1996: Catalytic conversion of polyethylene into fuels over mesoporous MCM-41, Chem. Commun., pp.725-726
  11. Aguado, J., Sotelo, J.L., Serrano, D.P., Calles, J.A. and Escola, J.M., 1997: Catalytic conversion of polyolefins into liquid fuels over MCM-41: Comparison with ZSM-5 and amorphous $SiO_2-Al_2O_3$, Energy Fuels., 11, pp.1225 https://doi.org/10.1021/ef970055v
  12. Seddegi, Z. S., Budrthumal, U., A1-Arfaj, A. A., Al-Amer, A. M. and Barri, S. A. I, 2002: Catalytic cracking of polyethylene over all silica MCM-41 molecular sieve, Applied Catalysis A: General, 225, pp.167-176 https://doi.org/10.1016/S0926-860X(01)00872-9
  13. Kim, J.M., Kwak, J.H., Jun, S. and Ryoo, R., 1995: Ion exchange and thermal stability of MCM-41, J. Phys. Chem., 99, pp.16742-16746 https://doi.org/10.1021/j100045a039
  14. Ryoo, R., Jun, S., Kim, J.M. and Kim, M.J., 1997: Generalized route to the preparation of mesoporous metallosilicate via post-synthetic metal implantation, Chern. Commun., pp.2225-2226
  15. Kim, S. and Park, J.K. 1995: Characterization of thermal reaction by peak temperature and height of DTG curves, Thermochimica Acta, 264, pp.137-156 https://doi.org/10.1016/0040-6031(95)02316-T
  16. ASTM D 2887: Standard Test Method for Boiling Range Distribution of Petroleum Fractions by Gas Chromatography
  17. Lin, Y.H., Hwu, W.H., Ger, M.D., Yeh, T.F and Dwyer J., 2001: A combined kinetic and mechanistic modelling of the catalytic degradation, of polymers, Journal of Molecular Catalysis A: Chemical, 171, pp.143-151 https://doi.org/10.1016/S1381-1169(01)00079-6
  18. Bartholomew C.H., 2001: Mechanisms of catalyst deactivation, Applied Catalysis A: General, 212, pp.17-60 https://doi.org/10.1016/S0926-860X(00)00843-7