• Title/Summary/Keyword: Pyrolysis process

Search Result 439, Processing Time 0.029 seconds

Carbon Dioxide Adsorption Study of Biochar Produced from Shiitake Mushroom Farm by-product Waste Medium (표고버섯 농가 부산물 폐배지 기반 바이오차의 이산화탄소 흡착 연구)

  • Gyuseob Song;Jinseung Kim;Juhyoung Park;Younghoon Noh;Youngchan Choi;Youngjoo Lee;Kyubock Lee
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.135-144
    • /
    • 2024
  • The present study investigated waste medium from a domestic shiitake mushroom farm, which was pyrolyzed to produce biochar. The yield rate of the biochar was compared after exposure to various pyrolysis temperature conditions, and the characteristics of the produced biochar were analyzed. The present study focused on the carbon dioxide (CO2) adsorption capacity of the resulting biochar. The CO2 adsorption capacity exhibited a correlation with the pyrolysis temperature of the biochar, with increasing temperatures resulting in higher CO2 adsorption capacities. Brunauer-Emmett-Teller (BET) analysis showed that the CO2 adsorption capacity was related to the surface area and pore volume of the biochar. Calcium is added to the process of producing mushroom medium. Experiments were performed to investigate the CO2 adsorption capacity of the biochar from the waste medium with the addition of calcium. In addition, CO2 adsorption experiments were conducted after the pyrolysis of kenaf biochar with the addition of calcium. The results of these experiments show that calcium affected the CO2 adsorption capacity.

Morphology Changes in the Matrix of 2D-Carbon Fiber Reinforced Composites during the Carbonization Process (이차원 구조(2D) 탄소섬유 보강 복합재의 탄화공정중 기질의 형태 변화)

  • Joo, Hyeok-Jong;Yoon, Byeong-Il;Choi, Don-Muk;Oh, In-Seok
    • Korean Journal of Materials Research
    • /
    • v.2 no.4
    • /
    • pp.298-305
    • /
    • 1992
  • The carbonization behaviors of CFRP fabricated with 2D-woven fabric and matrix phenolic resin have been studied. The changes in dimension were observed in the temperature range of 365-37$0^{\circ}C$ in the thickness direction, 118-12$0^{\circ}C$ in the normal direction each other by TMA analysis. Observation with the optical microscope shows that the formed cracks and pores during the fabrication of CFRP were propagated with the increase of pyrolysis temperaure. New cracks and pores were formed in the pyrolysis temperature range of 400-50$0^{\circ}C$ In line with the formation and propagation of cracks, porosity was increased and density was decreased rapidly in the pyrolysis temperature range of from 40$0^{\circ}C$ to 70$0^{\circ}C$. Therefore heating rate in the carbonization process need to be controlled carefully by intervals.

  • PDF

Preparation of Asymmetric Ceramic Membrane by Coating-Pyrolysis Process (도포-열분해법을 이용한 비대칭 세라믹 분리막 제조)

  • Ryu, Hyun-Wook;Kim, Byung-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1153-1157
    • /
    • 2002
  • The fabrication of a three-layered asymmetric ceramic membrane was performed by slip casting of the porous alumina support and dip coating of the alumina intermediate layer using high purity ${\alpha}-Al_2O_3$ powders that have different particle size, followed by screen printing-pyrolysis of the $Tio_2$ layer as an ultrafilteration membrane using Ti-naphthenate solution. The bending strength, porosity and mean pore size of the alumina support were 231 kg/$cm^2$s, 30.26% and 0.19 ${mu}m$, respectively. The thickness of the intermediate layer was 30 ${mu}m$ and the mean pore size of that was 0.063 ${mu}m$. Also, the top layer was 0.5 ${mu}m$ thick and micropores with about 20 nm size were formed uniformly.

Infleunce of Nozzle Tip Size on the Preparation of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process

  • Yu, Jaekeun;Kim, Donghee
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.81-88
    • /
    • 2013
  • In this study, using a tin chloride solution as the raw material, a nano-sized tin oxide powder with an average particle size below 50 nm is generated by a spray pyrolysis process. The properties of the tin oxide powder according to the nozzle tip size are examined. Along with an increase in the nozzle tip size from 1 mm to 5 mm, the generated particles that appear in the shape of droplets maintain an average particle size of 30 nm. When the nozzle tip size increases from 1 mm to 2 mm, the average size of the generated particles is around 80-100 nm, and the ratio of the independent particles with a compact surface structure increases significantly. When the nozzle tip size is at 3 mm, the majority of the generated particles maintain the droplet shape, the average size of the droplet-shaped particles increases remarkably compared to the cases of other nozzle tip sizes, and the particle size distribution also becomes extremely irregular. When the nozzle tip size is at 5 mm, the ratio of droplet-shaped particles decreases significantly and most of the generated particles are independent ones with incompact surface structures. Along with an increase in the nozzle tip size from 1 mm to 3 mm, the XRD peak intensity increases, whereas the specific surface area decreases greatly. When the nozzle tip size increases up to 5 mm, the XRD peak intensity decreases significantly, while the specific surface area increases remarkably.

Effects of Char Produced from Burning Wood Combustibles on Thermal Pyrolysis (목재 가연물의 연소 시 생성되는 탄화가 열분해에 미치는 영향)

  • Hong, Ter-Ki;Ryu, Myung-Ho;Lee, Jong Won;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.7-12
    • /
    • 2019
  • To investigate the influence of the char layer formed during the combustion process on the pyrolysis of wood combustibles, ISO 5660-1 cone calorimetry experiments and Fire dynamics simulator (FDS) simulations were performed, and the results from these two methods were compared. The wood combustible selected as the fuel for this study, Douglas fir, has been widely used for the production of building materials, furniture, etc. The heat release rate (HRR) measured from the cone calorimetry experiment was in good agreement with the result predicted by the FDS simulation. However, the FDS simulation failed to predict the heat released by the smoldering combustion process, due to the absence of the char surface reaction in the model. The FDS simulation results clearly indicate that the char layer formed on the surface of combustibles produces a thermal barrier which prevents heat transfer to the interior, thickening the thermal depth and thus reducing the pyrolysis rate of combustibles.

Synthesis and Characterization of Titania-Partially-Stabilized Zirconia by Ultrasonic Spray Pyrolysis (초음파분무열분해법에 의한 TPSZ의 합성 및 특성)

  • Seo, Ki-Lyong;Ri, Chang-Seop
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.6
    • /
    • pp.592-599
    • /
    • 2000
  • The fine particles of binary ceramic composite of titania-partially-stabilized zirconia(TPSZ) were synthesized by ultrasonic spray pyrolysis at the various temperatures, compositions and concentrations and the effects of process factors for synthesis on the characteristics of fine particles were discussed. The starting salt solutions were prepared to have the ionic concentrations of 0.025~0.1 M aqueous solutions. The fine particles were prepared to have the compositions of 90~97.5 wt% of $ZrO_2$ and 2.5~10 wt% of $TiO_2$. The temperatures for particle synthesis were regulated to be 400~550$^{\circ}C$ as a drying zone, 800~1100$^{\circ}C$ as a pyrolysis zone. The produced fine particles were collected by a wet process and analyzed to investigate characteristic properties after being dried. The compositions of ceramic fine particles were determined by Inductively Coupled Plasma-Atomic Emission Spectroscopy(ICP-AES) technique and phases, morphologies and particle sizes of those were investigated by Raman Spectroscopy, X-ray diffraction(XRD), Scanning Electron Microscopy(SEM), Transmission Electron Microscopy(TEM) and Particle Size Analyzer(PSA) techniques.

  • PDF

A study on the Manufacture of the CuO Powder from Copper Chloride Solution by Spray Pyrolysis Process (분무열분해법에 의한 구리염화물 용액으로부터 CuO 분말 제조에 관한 연구)

  • Yu, Jae-Geun;Park, Hui-Beom
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.58-67
    • /
    • 2002
  • In this study copper chloride(CuCl$_2$) solution was used as raw material to produce the fine copper oxide powder which has less than 1 $\mu\textrm{m}$ average particle size and has uniform particle size distribution by spray pyrolysis process. In the present study, the effects of reaction temperature, the injection speed of solution and air, the nozzle tip size and the concentration of raw material solution on the properties of produced powder were studied. The structure of the powder became much more compact with increasing the reaction temperature regardless of copper concentration of the raw material solution. The particle size of the powder increased accordingly with increasing the reaction temperature in case of 30 g/$\ell$ copper concentration of the solution. The particle size of the powder increased accordingly, and the surface structure of the powder became more porous with increasing the copper concentration of the raw material solution. When copper concentration in raw material solution was more than 100 g/$\ell$, all produced powder was CuCl regardless of reaction temperatures. When copper concentration in solution was below 30 g/$\ell$ and reaction temperature was higher than 90$0^{\circ}C$, CuO was the main phase. The surface of the powder tended to become porous with increasing the injection speed of solution. Particle size was increased and the surface of the powder showed severely disrupted state with increasing the nozzle tip size. The particle size was decreased and the particle size distribution was more uniform with increasing the air pressure through the nozzle.

Effects of Air Pressure on the Fabrication of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process (분무열분해 공정에 의한 주석산화물 나노분체 제조에 미치공기압력의 영향)

  • Yu, Jae-Keun;Kim, Dong-Hee
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.690-696
    • /
    • 2011
  • In this study, nano-sized tin oxide powder with an average particle size of below 50 nm is prepared by the spray pyrolysis process. The influence of air pressure on the properties of the generated powder is examined. Along with the rise of air pressure from $0.1kg/cm^2$ to $3kg/cm^2$, the average size of the droplet-shaped particles decreases, while the particle size distribution becomes more regular. When the air pressure increases from $0.1kg/cm^2$ to $1kg/cm^2$, the average size of the dropletshaped particles, which is around 30-50 nm, shows hardly any change. When the air pressure increases up to $3kg/cm^2$, the average size of the droplet-shaped particles decreases to 30 nm. For the independent generated particles, when the air pressure is at $0.1kg/cm^2$, the average particle size is approximately 100 nm; when the air pressure increases up to $0.5kg/m^2$, the average particle size becomes more than 100 nm, and the surface structure becomes more compact; when the air pressure increases up to $1kg/cm^2$, the surface structure is almost the same as in the case of $0.5kg/cm^2$, and the average particle size is around 80- 100 nm; when the air pressure increases up to $3kg/cm^2$, the surface structure becomes incompact compared to the cases of other air pressures, and the average particle size is around 80-100 nm. Along with the rise of air pressure from $0.1kg/cm^2$ to $0.5kg/cm^2$, the XRD peak intensity slightly decreases, and the specific surface area increases. When the air pressure increases up to $1kg/cm^2$ and $3kg/cm^2$, the XRD peak intensity increases, while the specific surface area also increases.

Study on identification of plastic used for modern artwork (플라스틱류 작품의 동정 기술 연구)

  • Yu, Ji A;Chung, Yong Jae;Ham, Seung Wook
    • Analytical Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.100-107
    • /
    • 2014
  • Plastic has been widely used in modern artworks' materials due to its merits of process ability and mass production. In the country, value of plastic artifact is increasing but the field of plastic study is limited to industrial purpose. In this study, Identification methods of plastic were performed by SPME-GC/MS and pyrolysis-GC/MS using trace of samples. As a result of identification using SPME-GC/MS, aromatic compounds were identified from polyvinyl chloride. And alkane compounds were identified from polyethylene, and polypropylene. Aromatic compounds were identified from polystyrene, and diethylene glycol appeared in polyurethane based on polyester was identified from polyurethane. As a result of identification using pyrolysis- GC/MS, aliphatic alkenes compounds and phthalate(DEHP) were identified from polyvinyl chloride. Aliphatic alkenes compounds and phthalate(DIBP) were detected from polyethylene. 1-hexene, etc., were detected from polypropylene, aromatic compounds were identified from polystyrene, and methylene diphenyl diisocyanate which is polyurethane basic material was confirmed from polyurethane. This study suggested that non-destructive SPME and pyrolysis-GC/MS are useful to identify compounds particularly polystyrene and polyurethane. These two analytical methods were expected to be applied for identification of unidentified plastic artworks before conservation treatment.