• Title/Summary/Keyword: Pyrolysis Gas

Search Result 423, Processing Time 0.031 seconds

Decomposition Characteristics of Raw Rubber and Tire by Thermal Degradation Process (열분해 공정을 이용한 원료고무와 타이어의 분해 특성)

  • Kim, Won-Il;Kim, Hyung-Jin;Jung, Soo-Kyung;Hong, In-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1052-1060
    • /
    • 1999
  • Tire and raw material of tire, i.e., SBR were degraded using pyrolysis process. The yield of pyrolytic oil was increased and that of gas was decreased with increase of operating temperature in pyrolysis. And the yield of pyrolytic oil was increased and that of gas and char was decreased with increase of heating rate. The maximum oil yields of SBR and tire were 86% and 55% each at $700^{\circ}C$ with a heating rate of $20^{\circ}C/min$. The number average molecular weight ranges of SBR and tire were 740~2486, 740~1719, and the calorific value of SBR and tire was 39~40 kJ/g. The oil components were consisted of mostly 50 aromatic compounds. The particle size was decreased and the surface area was increased with increase of operating temperature, and the BET surface area was $47{\sim}63m^2/g$. The optimum condition of pyrolysis was the temperature of $700^{\circ}C$ with heating rate of $20^{\circ}C$, and the reactor was continuously purged with inert gas to sweep the evolved gases from the reaction zone.

  • PDF

Valorizing Cattle Manure to Syngas via Catalytic Pyrolysis with CO2 (이산화탄소-촉매 열분해 활용 우분 유래 합성가스 증대 연구)

  • Lee, Dong-Jun;Jung, Jong-Min;Kim, Jung Kon;Lee, Dong-Hyun;Kim, Hyunjong;Park, Young-Kwon;Kwon, Eilhann E.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.141-150
    • /
    • 2022
  • To abate the environmental burden derived from the massive generation of cattle manure (CM), pyrolysis of CM was suggested as one of the methods for manure treatment. In respect of carbon utilization, pyrolysis has an advantage in that it can produce usable carbon-based chemicals. This study was conducted to investigate a syngas production from pyrolysis of CM in CO2 condition. In addition, mechanistic functionality of CO2 in CM pyrolysis was investigated. It was found that the formation of CO was enhanced at ≥ 600 ℃ in CO2 environment, which was attribute to the homogeneous reactions between CO2 and volatile matters (VMs). To expedite reaction kinetics for syngas production during CM pyrolysis, Catalytic pyrolysis was carried out using Co/SiO2 as a catalyst. The synergistic effects of CO2 and catalyst accelerate the formation of H2 and CO at entire temperature range. Thus, this result offers that CO2 could be a viable option for syngas production with the mitigation of greenhouse gas.

Investigation of Physicochemical Properties of Bio-oils Produced from Pitch Pine (Pinus rigida) at Various Temperatures (열분해 온도에 따른 리기다소나무 바이오오일의 물리·화학적 특성 평가)

  • Kim, Tae-Seung;Kim, Jae-Young;Oh, Shin-Young;Hwang, Hye-Won;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.204-211
    • /
    • 2012
  • In this study, fast pyrolysis of pitch pine (Pinus rigida) was performed in a fluidized bed reactor under the temperature ranges between 400 and $550^{\circ}C$ at the residence time of 1.9 sec. Essential pyrolytic products (bio-oil, biochar, and gas) were produced and their yield was clearly influenced by temperature. The maximum yield of bio-oil was observed to 64.9 wt% (wet basis) at the temperature of $500^{\circ}C$. As pyrolysis temperature increased, the yield of biochar decreased from 36.8 to 11.1 wt%, while gas amount continuously increased from 16.1 to 33.0 wt%. Water content as well as heating value of bio-oils were obviously sensitive to the pyrolysis temperature. The water contents in the bio-oil clearly decreased from 26.1 ($400^{\circ}C$) to 11.9 wt% ($550^{\circ}C$), with increasing the fast pyrolysis temperature, while their higher heating values were increased from 16.6 MJ/kg to 19.3 MJ/kg. According to GC/MS analysis, 22 degradation compounds were identified from the bio-oils and 10 compounds were derived from carbohydrate, 12 compounds were derived from lignin.

Pyrolysis of Quercus Variabilis in a Bubbling Fluidized Bed Reactor (기포 유동층 반응기에서 굴참나무의 열분해반응 특성 연구)

  • Lim, Dong-Hyeon;Sim, Jae-Wook;Kim, Seung-Soo;Kim, Jinsoo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.687-692
    • /
    • 2016
  • Biomass has been concerned as one of the alternative energy resources because it is renewable, abundant worldwide, eco-friendly, and carbon neutral. Quercus variabilis has been studied to understand pyrolysis reaction characteristics, and to evaluate the efficiency of bio-energy production from fast pyrolysis. Quercus variabilis were fast pyrolyzed in a bubbling fluidized bed reactor at various reaction conditions. The effects of pyrolysis temperature between $400^{\circ}C$ and $550^{\circ}C$ on product yields were investigated. The yield of bio-oil was changed between 36.98 wt% and 39.14 wt%, and those of gas yield was 33.40 and 36.96 wt% with increasing reaction temperature. The higher heating value (HHV) of bio-oil at $500^{\circ}C$ ($3.0{\times}U_{mf}$) was 20.18 MJ/kg. The gas compositions were similar for all reaction conditions such as CO, $CO_2$ and $CH_4$, and $CO_2$ selectivity was the highest (37.16~50.94 mol%). The bio-oil has high selectivities for furfural, phenol and their derivatives such as 1-hydroxy-2-propanone, 2-methoxy-phenol, 1,2-benzendiol, 2,6-dimethoxy-phenol.

A Study on the Pyrolysis System Development for Oil Recovery from Waste Fishing Nets and Ropes (오일 회수를 위한 폐로프와 폐어망 열분해 장치 개발에 대한 연구)

  • Kim Yong-Seop;Yu Jeong Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.2
    • /
    • pp.43-51
    • /
    • 2001
  • Now our ocean environment pollution is very serious. Its harm hinders in marine breeding and the safe navigation of ships at the coast. We have used an assembly system for a measure taken against environment pollution like this. But, here are some problems awaiting solution. First, most of combustible materials among ocean waste are high polymer, so it is necessary some special equipment to incinerate them. In the process we can't overlook air pollution by exhaust gas. Also, when we reclaim these wastes, we remember that they can't be decomposed naturally and leaking water may pollute soil. Thus now a days new treatment method has been developed, it recycles and doesn't product secondary pollution materials by recovering oil from pyrolysis. For it, this study investigated chemicalㆍphysical properties of wastes. And it found condition of recovering the most oil. Also it probed that the variation of temperature raising speed affects the weight reduction characteristics of wastes. Also, while studying recovered oil by waste pyrolysis and the rate of non-condensing gas in accordance with the variation of temperature raising speed. Finally we had confidence the development of pyrolysis oil recovery would succeed because we carried out evaluation at an economic point of view about it.

  • PDF

Study on Qualitative Analysis for Lacquer Mixed with Some Additives by Pyrolysis‐Gas Chromatography/Mass Spectrometry (Py-GC/MS 분석법을 이용한 첨가물 혼합 옻칠 접착제의 정성분석)

  • Kim, Ji Eun;Yu, Ji A;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.33 no.1
    • /
    • pp.51-59
    • /
    • 2017
  • Lacquer has been used as a natural paint or adhesive in Korea since 2nd century B.C. It has been found to have been used as an adhesive as mentioned in old records and as seen in excavated relics, It was also mixed with flour, animal glue, or fish glue to produce lacquer adhesives. Qualitative analysis and evaluation of the applicability of lacquer and additives was performed in this study. The results of EGA analysis for lacquer additives confirmed that the pyrolysis temperature of lacquer, glucose glue, and animal glue. On the basis of this result, raw lacquer sample was checked that pyrolysis product that originated from urushiol side chain (R group). Components originating from glucose and amino acid were detected in glutinous rice paste and animal glue samples. In this study, the optimum pyrolysis temperature for each lacquer and additive mixture was determined from basic qualitative analysis data. By performing the qualitative analysis of each mixture, the applicability of this technique for analyzing real relics was evaluated.

Pyrolysis Characteristic and Ignition Energy of High-Density Polyethylene Powder (고밀도 폴리에틸렌 분진의 열분해성과 착화에너지)

  • Han, Ou-Sup;Lee, Jung-Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.31-37
    • /
    • 2014
  • The aim of this work is to provide new experimental data on the pyrolysis characteristics and the minimum ignition energy (MIE) by using the same high-density polyethylene (HDPE) powder in domestic HDPE dust explosion accident. To evaluate the explosion sensitivity of HDPE, thermo-gravimetric analysis (TGA), differential scanning calorimeter (DSC) and MIE apparatus (MIKE-3, K$\ddot{u}$hner) was conducted. The measurements showed the volume median diameter of $61.6{\mu}m$ but the particle number density of 98 % in the range $0.4{\sim}4{\mu}m$. The ignition temperature from the results of TGA and DSC in HDPE dust layers was observed in the range of $380{\sim}490^{\circ}C$. MIE was measured under 1 mJ in the HDPE dust concentration of $1200{\sim}1800g/m^3$, it was found that the ratio of particle number density in the range $0.4{\sim}4{\mu}m$ was very high (98%).

Hydrogen Separation of Carbon Molecular Sieve Membranes Derived from Polyimides Having Decomposable Side Groups (열분해성 그룹이 도입된 폴리이미드로부터 유도된 탄소분자체막의 수소 분리 특성)

  • Young Moo Lee;Youn Kook Kim;Ji Min Lee;Ho Bum Park
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.99-107
    • /
    • 2004
  • Carbon molecular sieve (CMS) membranes were prepared by pyrolysis of polyimides having carboxylic acid groups and applied to the hydrogen separation. The polymeric membranes having carboxylic acid groups showed different steric properties as compared with polymeric membranes having other side groups ($-CH_3$ and $-CF_3$) because of the hydrogen bond between the carboxylic acid groups. However, the microporous CMS membranes were significantly affected by the decomposable side groups evidenced from the wide angle X-rat diffraction, nitrogen adsorption isotherms, and single gas permeation measurement. Furthermore, the gas separation properties of the CMS membranes were essentially affected by the pyrolysis temperature. As a result, the CMS membranes Prepared by Pyrolysis of polyimide containing carboxylic acid froups at $700^{\circ}C$ showed the $H_2$ permeability of 3,809 Baller [$1{\times}10^{-10}$ H $\textrm{cm}^$(STP)cm/$\textrm{cm}^2$.s.cmHg], $H_2$/$N_2$, selectivity of 46 and $H_2$/$CH_4$ selectivity of 130 while the CMS membranes derived from polyimide showed the H$_2$ permeability of 3,272 Barrer, $H_2$/$N_2$ selectivity of 136 and $H_2$/$CH_4$ selectivity of 177.