Hydrogen Separation of Carbon Molecular Sieve Membranes Derived from Polyimides Having Decomposable Side Groups

열분해성 그룹이 도입된 폴리이미드로부터 유도된 탄소분자체막의 수소 분리 특성

  • Young Moo Lee (National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Youn Kook Kim (National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Ji Min Lee (National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Ho Bum Park (National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyang University)
  • Published : 2004.06.01

Abstract

Carbon molecular sieve (CMS) membranes were prepared by pyrolysis of polyimides having carboxylic acid groups and applied to the hydrogen separation. The polymeric membranes having carboxylic acid groups showed different steric properties as compared with polymeric membranes having other side groups ($-CH_3$ and $-CF_3$) because of the hydrogen bond between the carboxylic acid groups. However, the microporous CMS membranes were significantly affected by the decomposable side groups evidenced from the wide angle X-rat diffraction, nitrogen adsorption isotherms, and single gas permeation measurement. Furthermore, the gas separation properties of the CMS membranes were essentially affected by the pyrolysis temperature. As a result, the CMS membranes Prepared by Pyrolysis of polyimide containing carboxylic acid froups at $700^{\circ}C$ showed the $H_2$ permeability of 3,809 Baller [$1{\times}10^{-10}$ H $\textrm{cm}^$(STP)cm/$\textrm{cm}^2$.s.cmHg], $H_2$/$N_2$, selectivity of 46 and $H_2$/$CH_4$ selectivity of 130 while the CMS membranes derived from polyimide showed the H$_2$ permeability of 3,272 Barrer, $H_2$/$N_2$ selectivity of 136 and $H_2$/$CH_4$ selectivity of 177.

Keywords

References

  1. Membrace technology and applications R.W.Baker
  2. Polymeric gas separation membranes R.E.Kesting;A.K.Fritzsche
  3. Recent developments in separation science N.N.Li;J.M.Calo
  4. J. Membrane Sci. v.62 Correlation of separation factor versus permeability for polymeric membranes L.M.Robeson https://doi.org/10.1016/0376-7388(91)80060-J
  5. J. Membrane Sci. v.211 Mixed matrix membranes using carbon molecular sieves Ⅰ. Preparation and experimental results D.Q.Vu;W.J.Koros;S.J.Miller https://doi.org/10.1016/S0376-7388(02)00429-5
  6. Chem. Mater. v.14 Novel pyrolytic carbon membranes containing silica: Preparation and characterization H.B.Park;I.Y.Suh;Y.M.Lee https://doi.org/10.1021/cm020216v
  7. J. Membrane Sci. v.213 Pyrolytic carbon-silica membrane: a promising membrane materials for improved gas separation H.B.Park;Y.M.Lee https://doi.org/10.1016/S0376-7388(02)00533-1
  8. J. Membrane Sci. Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon moecular sieve membranes H.B.Park;Y.K.Kim;J.M.Lee;S.Y.Lee;Y.M.Lee
  9. Sep. Sci. Tech. v.22 The carbon molecular sieve membranes. General properites and the permeability of methane/hydrogen mixture J.E.Koresh;A.Soffer https://doi.org/10.1080/01496398708068993
  10. Carbon v.30 Preparation of macroporous carbon films from polyimide by phase inversion method H.Hatori;Y.Yamada;M.Shiraishi https://doi.org/10.1016/0008-6223(92)90094-D
  11. Ind. Eng. Chem. Res. v.34 Simultaneous improvement of permeance and permselectivity of 3,3'4,4'-biphenyltetracarboxylic dianhydride-4,4'-oxydianiline polyimide membrane by carbonization J.Hayashi;M.Yamamoto;K.Kusakabe;S.Morooks https://doi.org/10.1021/ie00039a028
  12. J. Membrane Sci. v.131 Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas separation J.Petersen;M.Matsuda;K.Haraya https://doi.org/10.1016/S0376-7388(97)00041-0
  13. Carbon v.32 Carbon molecular sieve gas separation membranes. Part Ⅱ. Regeneration following organic exposure C.W.Jones;W.J.Koros https://doi.org/10.1016/0008-6223(94)90136-8
  14. Ind. Eng. Chem. Res. v.33 Preparation of carbon molecular sieve membrane and diffusion of binary mextures in the membrane Y.D.Cheng;R.T.Yang https://doi.org/10.1021/ie00036a033
  15. J. Membrane Sci. v.110 Performance and pore characterization of nanoporous carbon membranes for gas separation M.B.Rao;S.Sircar https://doi.org/10.1016/0376-7388(95)00241-3
  16. Sep. Sci. Technol. v.31 Asymmetric molecular sieve carbon membranes S.Wang;M.Zeng;Z.Wang https://doi.org/10.1080/01496399608001048
  17. Microporous Mater v.8 F.K.Katsaros;T.A.Steriotis;A.K.Stubos;A.Mitropoulos;N.K.Kanellopoulos;S.Tennison https://doi.org/10.1016/S0927-6513(96)00080-6
  18. J. Membrane Sci. v.95 Highly asymmetrical carbon membrane V.M.Linkov;R.D.Sanderson;E.P.Jacobs https://doi.org/10.1016/0376-7388(94)85032-1
  19. Carbon v.30 Carbon molecular sieve films from polyimide H.Hatori;Y.Yamada;M.Shiraishi;H.Nakata;S.Yoshitomi https://doi.org/10.1016/0008-6223(92)90095-E
  20. J. Chem. Soc. Chem. Commun. v.11 Molecular sieving effect of carbonized Kapton polyimide membrane H.Suda;K.Haraya
  21. Carbon v.32 Carbon molecular sieve gas separation membranes. Part Ⅰ. Preparation and characterization based on polyimide precursors S.W.Jones;W.J.Koros https://doi.org/10.1016/0008-6223(94)90135-X
  22. J. Membrane Sci. The gas separation properties of carbon molecular sieve membranes derived from polyimides having carboxylic acid groups Y.K.Kim;J.M.Lee;H.B.Park;Y.M.Lee
  23. Polymeric gas separation membrane R.E.Kesting;A.K.Fritzsche
  24. J. Polymer Sci. v.B 30 Effect of methyl substituents on permeability and permselectivity of gases in polyimides prepared from methyl substituted phenylenediamines K.Tananka;M.Okano;H.Toshino;H.Kita;K.Okamoto
  25. J. Membrane Sci. v.50 Gasseparation applications of miscible blends of isomeric polyimides M.R.Coleman;R.Kohn;W.J.Koros https://doi.org/10.1016/S0376-7388(00)80626-2
  26. Int. J. Hydrogen Engrgy v.23 An overview of industrial uses of hydrogen R.Ramachandran;R.K.Menon https://doi.org/10.1016/S0360-3199(97)00112-2
  27. Chem. Ind. v.53 Hydrogen energy system as a permanent solution to global energy-enviromnental problems T.N.Veziroglu
  28. J. Membrane Sci. Synthesis, characterization, and gas permeation properties of a hydrogen premeable silica membrane supported on poros alumina D.Lee;L.Zhang;S.T.Oyama;S.Niu;R.F.Saraf
  29. Membrane J. v.13 Carbon molecular sieve membranes derived from thermally labile polymer containing polyimide and their gas separation properties Y.K.Kim;J.M.Lee;H.B.Park;Y.M.Lee
  30. New Carbons: Cantrol of structure and functions M.Inagaki
  31. Ind. Eng. Chem. Res. v.35 Effect of polyimide pyrolysis conditions on carbon molecular sieve membrane properties C.G.Vincent;W.J.Koros https://doi.org/10.1021/ie950746j
  32. Ind. Eng. Chem. Res. v.40 Carbon molecular sieve membranes derived from phenolic resin with a pendant sulfonic acid group W.Zhou;M.Youshino;H.Kita;K.I.Okamoto https://doi.org/10.1021/ie010402v
  33. J. Phys. Chem. v.B101 Gas permeation through microporous of carbon molecular sieve membranes derived from Kapton polyimide H.Suda;K.Haraya