• Title/Summary/Keyword: Pyrolysis Characteristics

Search Result 409, Processing Time 0.022 seconds

A Study on the Characteristics of Solid Capacitor According to the Pyrolysis Methods (열분해 방식에 따른 고체 커패시터의 특성연구)

  • Kim, Jaekun;Yu, Hyungjin;Hong, Woonghee
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.614-622
    • /
    • 2006
  • A Study on the characteristics of $Ta/Ta_2O_5/MnO_2$ capacitor applied $MnO_2$ by means of pyrolysis of manganese nitrate solution was carried out. Single phase of $MnO_2$ was obtained in the pyrolysis temperature range of 230 to $250^{\circ}C$ by TG/DSC analysis on manganese nitrate solution. Temperature of pyrolysis, concentration of manganese nitrate solution and the number of pyrolysis were selected for the basic parameters of embodying $MnO_2$ solid electrolyte and then the effects of these parameters on the characteristics of capacitor were estimated. The characteristics of capacitor pyrolyzed radiationally was superior to that of capacitor pyrolyzed convectionally on the basis of these optimized parameter conditions. It was verified that radiational pyrolysis formed smaller spherical $MnO_2$ particles than those of convectional one relatively and these facts resulted in forming uniform and dense solid electrolyte layer into the microporous sintered body of capacitor.

The characteristics of pyrolysis and combustion for a hollow cylindrical solid fuel (중공 원통형 고체연료의 열분해 및 연소특성)

  • 민성기;김호영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.517-527
    • /
    • 1989
  • A theoretical analysis for the characteristics of pyrolysis and combustion of solid fuel was carried out in the present study. The hollow cylindrical combustion model including gas phase and solid fuel at inside and outside respectively was developed for the numerical analysis and parametric studies. The effects of volatile contents in the porous solid fuel and Reynolds number at inlet of gas phase on the characteristics of pyrolysis and combustion such as the radial, axial and time variations of volatile mass flux through porous solid fuel, temperature, mass fractions of gaseous fuel and oxidizer, and flame shape were investigated in the parametric studies. The results of the present study show that the flame produced by the volatiles moves to the downstream of fuel with accelerating velocity with time until extinction is occurred resulting from the completion of pyrolysis. When flame is employed with smaller amount of volatiles content in the solid fuel, the flame sheet exists closer to the inner wall of solid fuel. As Reynolds number at inlet increases, the flame sheet moves to the inner wall due to effect of convection even though the volatiles by pyrolysis increases.

Morphological and Electrical Characteristics of nc-ZnO/ZnO Thin Films Fabricated by Spray-pyrolysis for Field-effect Transistor Application (전계효과트랜지스터 기반 반도체 소자 응용을 위한 스프레이 공정을 이용한 nc-ZnO/ZnO 박막 제작 및 특성 분석)

  • Cho, Junhee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.1-5
    • /
    • 2021
  • Field-effect transistors based on solution-processed metal oxide semiconductors has attracted huge attention due to their intrinsic characteristics of optical and electrical characteristics with benefits of simple and low-cost process. Especially, spray-pyrolysis has shown excellent device performance which compatible to vacuum-processed Field-effect transistors. However, the high annealing temperature for crystallization of MOS and narrow range of precursors has impeded the progress of the technology. Here, we demonstrated the nc-ZnO/ZnO films performed by spray-pyrolysis with incorporating ZnO nanoparticles into typical ZnO precursor. The films exhibit preserving morphological properties of poly-crystalline ZnO and enhanced electrical characteristics with potential for low-temperature processability. The influence of nanoparticles within the film was also researched for realizing ZnO films providing good quality of performance.

Liquefaction Characteristics of HDPE by Pyrolysis (HDPE의 열분해에 의한 액화 특성)

  • 유홍정;이봉희;김대수
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.84-89
    • /
    • 2003
  • Pyrolysis of high density polyethylene(HDPE) was carried out to find the effects of temperature and time on the pyrolysis. The starting temperature and activation energy of HDPE pyrolysis increased with increasing heating rate. In general, conversion and liquid yield continuously increased with pyrolysis temperature and pyrolysis time. This tendency is very sensitive with pyrolysis time, especially at 45$0^{\circ}C$. Pyrolysis temperature has more influence on the conversion than pyrolysis time. Each liquid product formed during pyrolysis was classified into gasoline, kerosene, light oil and wax according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. As a result, the amount of liquid products produced during HDPE pyrolysis at 45$0^{\circ}C$ was in the order of light oil > wax > kerosene > gasoline, and at 475$^{\circ}C$ and 50$0^{\circ}C$, it was wax > light > oil > kerosene > gasoline.

Combustion Characteristics of RDF in a 30kg/hr Scale Pyrolysis Melting Incinerator (30kg/hr급 열분해 용융소각로용 연소실에서 RDF의 연소 특성)

  • Jeon, Byoung-Il;Park, Sang-Uk;Shin, Dong-Hun;Ryu, Tae-Woo;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 2005
  • In this study, we investigated characteristics of a gas flow and a combustion property during the combustion of a RDF in a pyrolysis melting incinerator with disposal rate of 30 kg/hr. The RDF was pyrolyzed through the pyrolysis chamber at $600^{\circ}C$ of the chamber surface without oxygen condition. The pyrolysis gas was injected in the combustion chamber. It was burned by means of the staged combustion that was injecting secondary and tertiary air in the combustor. We measured the temperatures and the gas components in the combustion chamber while maintaining the air-fuel ratio of 1.3. Finally, we confirm that additional air injection, secondary and tertiary air ratio, was the most important factor to reduce NOx.

  • PDF

Desulfurization characteristics of low sulfur coal by mild pyrolysis (저온 열분해에 의한 저유황 석탄의 탈황 특성)

  • Park, KyeSung;Yun, ChaeKyung;Nam, YoungWoo
    • Clean Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Mild pyrolysis of four different coals (two bituminous coals and two Korean antracite) was investigated. Desulfurization characteristics, weight loss and variation of heating values were studied. As operating variables of experiment, pyrolysis temperature($350{\sim}550^{\circ}C$), pyrolysis time(5~20 min.) and particle size(0~3.55mm) were examined. The maximum sulfur removal rate of bituminous coal and anthracite were 38% and 28%, respectively. The optimum mild pyrolysis conditions were 10~15 min for pyrolysis time and $450{\sim}550^{\circ}C$ for pyrolysis temperature. The mild pyrolysis was effective to reduce organic sulfur content. Heating values of char per mass after pyrolysis increased about 5% compared to raw coal. The effect of coal particle size on the desulfurization was not observed.

  • PDF

Pyrolysis and combustion characteristics of dried sewage sludge in a fixed bed reactor (건조 하수 슬러지의 열분해 및 고정층 연소 특성 연구)

  • Kim, Minsu;Lee, Yongwoon;Park, Jinje;Ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.29-32
    • /
    • 2014
  • The practical route for disposal of sewage sludge becomes energy recovery by combustion after its ocean dumping is banned in 2012 in Korea. Due to the high moisture content, however, sewage sludge is required to be dried before transport and combustion. In this study, pyrolysis and combustion characteristics of dried sewage sludge was investigated in a small-scale fixed bed reactor in order to provide fundamental data for energy recovery of the fuel. As the first step of combustion, the primary products of pyrolysis were analyzed in a fixed bed reactor for the condensable volatiles (tar), non-condensable gases, and char. For the combustion characteristics, another fixed bed reactor was constructed to monitor the weight and temperature of the fuel particles during ignition and combustion under different air flow rates. The test results were used to derive the ignition and burning rates.

  • PDF

A Study on the Pyrolysis and Combustion Characteristics of Solid Waste in a Pilot scale Pyrolysis Melting Incinerator (Pilot 규모의 열분해 용융 소각 시스템에서의 열분해 및 연소 특성 연구)

  • Yu, Tae-U;Yang, Won;Park, Ju-Won;Kim, Bong-Keun;Lee, Gi-Bang;Kim, Hi-Yeol;Park, Sang-Shin;Jeon, Keum-Ha
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.168-174
    • /
    • 2006
  • A pilot scale (200kg/hr) pyrolysis melting incineration system is designed and constructed in Korea Institute of Industrial Technology. The incineration process is composed of pyrolysis, gas combustion, ash melting, gas stabilization, waste heating boiler, and bag filter. For each unit process, experimental approaches have been conducted to find optimal design and operating conditions. Especially, a pyrolysis is very important process in that it is a way of energy recirculation and minimizing the waste products. This paper presents major results of the most efficient operating conditions in a pilot scale pyrolysis melting incinerator.

  • PDF

Combustion Reactivity Assessments of Oils Used for the Cold Start-Up Operation of Large Scale Boiler (대용량 보일러의 냉간기동용 액체 연료에 대한 연소 반응성 평가)

  • LEE, JANG HO;PARK, HO YOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.1
    • /
    • pp.77-84
    • /
    • 2022
  • The experimental work has been carried out for the study of pyrolysis of oil samples used in industrial and utility boilers in Korea. For five oil samples, the characteristics of pyrolysis have been investigated with a thermogravimetric analyzer (TGA), and their kinetic parameters were obtained and compared each other. The rate order of pyrolysis rate for five oils were as follows: by-product fuel oil, pyrolysis oil, diesel, a heavy oil and refined oil. The pyrolysis of refined oil has been successfully described by the three step, first order reaction model while the single step reaction model has been used for other oils. For the reaction temperature over 550 K, the reactivity of refined oil was very poor compared with other oils.

Distribution Characteristics of Pyrolysis Products of Polyethylene (폴리에틸렌 열분해 생성물의 분포 특성)

  • Lee, Dong-Hwan;Choi, Hong-Jun;Kim, Dae-Su;Lee, Bong-Hee
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.157-162
    • /
    • 2008
  • To investigate the characteristics of pyrolysis for LDPE, LLDPE and HDPE, the low temperature pyrolysis was carried out in the range of 425 to $500^{\circ}C$ for 35 to 65 min. The liquid products formed during pyrolysis were classified into gasoline, kerosene, light oil and wax according to the distillation temperatures based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. TGA experiments for three PE samples showed that the onset temperature of pyrolysis increased with increasing heating rate, and the onset temperature of pyrolysis at a fixed heating rate was in the order of LDPE$475^{\circ}C$. Yields of gasoline and kerosene were highest at $450^{\circ}C$, 65 min and decreased slightly at above $475^{\circ}C$.