• Title/Summary/Keyword: Pure Co

Search Result 866, Processing Time 0.029 seconds

An Experimental Study of Laser-induced Ignition of Solid Propellant with Strand Burner (레이저 점화에 의한 고체추진제 Strand Burner 실험)

  • Lee, Sanghyup;Ko, Taeho;Yang, Heesung;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.39-45
    • /
    • 2013
  • Basically, in order to apply solid propellant as ignition source to high energy metal particle combustion system, we analyzed combustion characteristics of the HTPB/AP/Al, HTPE/AP/Al propellants by using a strand burner. The propellants were tested in a high-pressure windowed strand burner, which was pressurized up to 300 psia with pure argon gas. Strand burner was visualized with two quartz windows and ignition was accomplished by a 10 W $CO_2$ laser. The burning rate of propellant was measured with high-speed camera method for frame analysis and photodiode method for combustion time analysis. Emission spectrum was measured with spectrometer at 300 nm ~ 800 nm and 1500 nm ~ 5000 nm and then we analyzed species during propellant combustion.

Enhancing Carbon Dioxide Storage Efficiency in Aquifers through Surfactant Application (계면활성제 활용에 따른 공극 규모 이산화탄소 저장 효율 향상)

  • Gang, Seokgu;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.63-70
    • /
    • 2023
  • Underground carbon dioxide (CO2) storage emerges as a pivotal strategy for mitigating atmospheric CO2 emissions and addressing global warming concerns. This study investigates techniques to optimize storage efficiency in aquifers, which stand out for their superior capacity compared to other geological layers. The focus is on the application of nonionic and anionic surfactants to enhance CO2 storage efficiency within confined spaces. A specialized micromodel facilitating fluid flow observation was employed for the evaluation. Experimental results revealed a noteworthy minimum 40% increase in storage efficiency at the lowest injection rate when utilizing nonionic and anionic surfactants, in comparison to pure water injection. Interestingly, no significant variations in storage efficiency were observed based on the ionicity and concentration of the surfactants under investigation. These findings have implications for guiding the selection and concentration determination of surfactants in future underground CO2 storage endeavors.

Game Theory Based Co-Evolutionary Algorithm (GCEA) (게임 이론에 기반한 공진화 알고리즘)

  • Sim, Kwee-Bo;Kim, Ji-Youn;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.253-261
    • /
    • 2004
  • Game theory is mathematical analysis developed to study involved in making decisions. In 1928, Von Neumann proved that every two-person, zero-sum game with finitely many pure strategies for each player is deterministic. As well, in the early 50's, Nash presented another concept as the basis for a generalization of Von Neumann's theorem. Another central achievement of game theory is the introduction of evolutionary game theory, by which agents can play optimal strategies in the absence of rationality. Not the rationality but through the process of Darwinian selection, a population of agents can evolve to an Evolutionary Stable Strategy (ESS) introduced by Maynard Smith. Keeping pace with these game theoretical studies, the first computer simulation of co-evolution was tried out by Hillis in 1991. Moreover, Kauffman proposed NK model to analyze co-evolutionary dynamics between different species. He showed how co-evolutionary phenomenon reaches static states and that these states are Nash equilibrium or ESS introduced in game theory. Since the studies about co-evolutionary phenomenon were started, however many other researchers have developed co-evolutionary algorithms, in this paper we propose Game theory based Co-Evolutionary Algorithm (GCEA) and confirm that this algorithm can be a solution of evolutionary problems by searching the ESS.To evaluate newly designed GCEA approach, we solve several test Multi-objective Optimization Problems (MOPs). From the results of these evaluations, we confirm that evolutionary game can be embodied by co-evolutionary algorithm and analyze optimization performance of GCEA by comparing experimental results using GCEA with the results using other evolutionary optimization algorithms.

Synthesis and Magnetic Properties of Zn, Co and Ni Substituted Manganese Ferrite Powders by Sol-gel Method

  • Kwon, Woo-Hyun;Kang, Jeoung-Yun;Lee, Jae-Gwang;Lee, Seung-Wha;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.159-164
    • /
    • 2010
  • The Zn, Co and Ni substituted manganese ferrite powders, $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$, were fabricated by the solgel method, and their crystallographic and magnetic properties were studied. The Zn substituted manganese ferrite, $Zn_{0.2}Mn_{0.8}Fe_2O_4$, had a single spinel structure above $400^{\circ}C$, and the size of the particles of the ferrite powder increased when the annealing temperature was increased. Above $500^{\circ}C$, all the $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$ ferrite had a single spinel structure and the lattice constants decreased with an increasing substitution of Zn, Co, and Ni in $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$. The Mossbauer spectra of $Mn_{1-x}Zn_xFe_2O_4$ (0.0$\leq$x$\leq$0.4) could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. For x = 0.6 and 0.8 they showed two Zeeman sextets and a single quadrupole doublet, which indicated they were ferrimagnetic and paramagnetic. And for x = 1.0 spectrum showed a doublet due to a paramagnetic phase. For the Co and Ni substituted manganese ferrite powders, all the Mossbauer spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. The variation of the Mossbauer parameters are also discussed with substituted Zn, Co and Ni ions. The increment of the saturation magnetization up to x = 0.6 in $Mn_{1-x}Co_xFe_2O_4$ could be qualitatively explained using the site distribution and the spin magnetic moment of substituted ions. The saturation magnetization and coercivity of the $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$ (x = 0.4) ferrite powders were also compared with pure $MnFe_2O_4$.

Synthesis and Magnetic Property of Nanocrystalline Fe-Ni-Co Alloys during Hydrogen Reduction of Ni0.5Co0.5Fe2O4 (Ni0.5Co0.5Fe2O4의 수소환원에 의한 나노구조 Fe-Ni-Co 합금의 제조 및 자성특성)

  • Paek, Min Kyu;Do, Kyung Hyo;Bahgat, Mohamed;Pak, Jong Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.167-173
    • /
    • 2011
  • Nickel cobalt ferrite($Ni_{0.5}Co_{0.5}Fe_2O_4$) powder was prepared through the ceramic route by the calcination of a stoichiometric mixture of NiO, CoO and $Fe_2O_3$ at $1100^{\circ}C$. The pressed pellets of $Ni_{0.5}Co_{0.5}Fe_2O_4$ were isothermally reduced in pure hydrogen at $800{\sim}1100^{\circ}C$. Based on the thermogravimetric analysis, the reduction behavior and the kinetic reaction mechanisms of the synthesized ferrite were studied. The initial ferrite powder and the various reduction products were characterized by X-ray diffraction, scanning electron microscopy, reflected light microscope and vibrating sample magnetometer to reveal the effect of hydrogen reduction on the composition, microstructure and magnetic properties of the produced Fe-Ni-Co alloy. The arrhenius equation with the approved mathematical formulations for the gas solid reaction was applied to calculate the activation energy($E_a$) and detect the controlling reaction mechanisms. In the initial stage of hydrogen reduction, the reduction rate was controlled by the gas diffusion and the interfacial chemical reaction. However, in later stages, the rate was controlled by the interfacial chemical reaction. The nature of the hydrogen reduction and the magnetic property changes for nickel cobalt ferrite were compared with the previous result for nickel ferrite. The microstructural development of the synthesized Fe-Ni-Co alloy with an increase in the reduction temperature improved its soft magnetic properties by increasing the saturation magnetization($M_s$) and by decreasing the coercivity($H_c$). The Fe-Ni-Co alloy showed higher saturation magnetization compared to Fe-Ni alloy.

Thermal Stability Improvement of Ni Germanosilicide using Ni-Ta alloy for Nano-scale CMOS Technology (Nano-scale CMOS에 적용하기 위한 Ni-Ta 합금을 이용한 Ni-Germanosilicide의 열안정성 개선)

  • Kim, Yong-Jin;Oh, Soon-Young;Yun, Jang-Gn;Lee, Won-Jae;Agchbayar, Tuya;Ji, Hee-Hwan;Kim, Do-Woo;Heo, Sang-Bum;Cha, Han-Seob;Kim, Young-Chul;Lee, Hi-Deok;Wang, Jin-Suk
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.607-610
    • /
    • 2005
  • In this paper, Ni Germanosilicide using Ni-Ta/Co/TiN is proposed to improve thermal stability. The sheet resistance of Ni Germanosilicide utilizing pure Ni increased dramatically after the post-silicidation annealing at $600^{\circ}C$ for 30min. However, using the proposed Ni-Ta/Co/TiN structure, low temperature silicidation and wide range of RTP process window were achieved.

  • PDF

Surface Analysis of Copper-Tin Thin Films Synthesized by rf Magnetron Co-sputtering

  • Gang, Yu-Jin;Park, Ju-Yeon;Gang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.272.2-272.2
    • /
    • 2016
  • Copper-Tin (CuSn) thin films were synthsized by rf magnetron co-sputtering method with pure Cu and Sn metal targets with various rf powers and sputtering times. The obtained CuSn thin films were characterized by a surface profiler (alpha step), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray induced Auger electron spectroscopy (XAES), and contact angle measurement. The deposition rates were calculated by the thickness of CuSn thin films and sputtering times. We observed hexagonal Cu20Sn6 and cubic Cu39Sn11 phases from the films by XRD measurement. From the survey XPS spectra, the Cu and Sn main peaks were observed. Therefore, we could conclude CuSn thin films were successfully fabricated on the substrate in this study. The changes of oxidation states and chemical environment of the films were investigated with high resolution XPS spectra in the regions of Cu 2p, Cu LMM, and Sn 3d. Surface free energy (SFE) and wettability of the CuSn thin films were studied with distilled water (DW) and ethylene glycol (EG) using the contact angle measurement. The total SFE of CuSn thin films decreased as rf power on Cu target increased. The contribution to the total SFE of dispersive SFE was relatively superior to polar SFE.

  • PDF

Effect of Mixing Route and Temperature on Formation of Nanoemulsions (나노에멀젼 형성에서의 혼합 경로와 온도의 영향)

  • Cho, Wan Goo;Kim, Eun Hee;Jang, Seon Il;Cho, Byoung Ok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.387-392
    • /
    • 2016
  • In this work, we compared the emulsion states having the same composition of liquid paraffin/ Span 80-Tween 80/ pure water and the different mixing paths and temperatures. Routes reaching the final composition in three component phase diagram were composed of three different ways. The average particle size of the emulsion prepared from the different mixing routes showed a significant difference and decreased as the mixing temperature was increased. However, the mixing route affected more in the size of the emulsions than mixing temperature.

Investigation on Combustion Characteristics of Pressurized Oxy-fuel Combustion System using Low Calorific Value Syngas (저열량 합성가스를 이용한 가압 순산소 연소 시스템의 연소 특성 분석 연구)

  • Kim, Dong-hee;Lee, Young-jae;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.39-47
    • /
    • 2016
  • The aims of this research were to investigate combustion characteristics of lab-scale pressurized oxy-fuel combustion(POFC) system. In this study, the reactor, 800 mm long, was equipped with co-axial burner. Low calorific value syngas that is composed of mainly CO and $H_2$ was used as fuel whereas pure oxygen was used as an oxidant. Thermal heat input to the reactor varied from 2.6 kW to 6.1 kW. The reactor pressure also increases from atmospheric up to 15 bar. The results show that as the pressure increase, the temperature of reactor decreases on the whole in all cases. A significant temperature drop was observed especially at the bottom section of the reactor that exist flame. In addition, the flame instability increases as the pressure increases. Furthermore $NO_x$ emissions increases from atmospheric up to 2 bar. However beyond 2 bar, $NO_x$ emission reduces as pressure increases. Lastly $NO_2$ ratio in $NO_x$ also increases as pressure increases.

Effect of Additives on Densification and Grain Growth of Magnesia (마그네시아의 치밀화 및 입자성장에 미치는 첨가물의 영향)

  • Lee, Hae-Weon;Kim, Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.2
    • /
    • pp.127-132
    • /
    • 1982
  • This experiment has been carried out for the purpose of investigating the effect of additives on densification and grain growth in magnesium oxide by a two-step process; hot pressing and heat treating. MgO powder has been obtained by calcining extra reagent grade MgCO3 at 90$0^{\circ}C$ for 30 minutes, and additives have been added to $MgCO_3$ in the form of soluble salts-Al$(NO_3)_3$$. $9H_2O$ and $Cr(NO_3)_3$.9H_2O$. The hot pressing has been carried out with changes of soaking time at 125$0^{\circ}C$ under the pressure of 250kg/$\textrm{cm}^2$, and the heat treating also at same temperature. The initial particle size of MgO measured by particle size analyzer was 0.86 microns. Densification rate obeyed the equation D=K lnt + C, and grain growth rate obeyed the equation G-G0=kt1/2. It was vaporization of some $Cr_2O_3$ and formation of solid solution that had an influence on desification of MgO containing $Cr_2O_3$. Activation energy for grain growth of pure MgO was 62.4 kcal/mole, therefore grain growth was supposed to be diffusioncontrolled process. But after heat treatmeat, excess additives were expected to slow down the grain growth by the formation of second phase or the solute atoms at grainboundary.

  • PDF