DOI QR코드

DOI QR Code

An Experimental Study of Laser-induced Ignition of Solid Propellant with Strand Burner

레이저 점화에 의한 고체추진제 Strand Burner 실험

  • 이상협 (연세대학교 기계공학과 대학원) ;
  • 고태호 (연세대학교 기계공학과 대학원) ;
  • 양희성 (LIG넥스원(주) PGM 연구센터 1팀) ;
  • 윤웅섭 (연세대학교 기계공학과)
  • Received : 2012.11.27
  • Accepted : 2013.02.27
  • Published : 2013.04.01

Abstract

Basically, in order to apply solid propellant as ignition source to high energy metal particle combustion system, we analyzed combustion characteristics of the HTPB/AP/Al, HTPE/AP/Al propellants by using a strand burner. The propellants were tested in a high-pressure windowed strand burner, which was pressurized up to 300 psia with pure argon gas. Strand burner was visualized with two quartz windows and ignition was accomplished by a 10 W $CO_2$ laser. The burning rate of propellant was measured with high-speed camera method for frame analysis and photodiode method for combustion time analysis. Emission spectrum was measured with spectrometer at 300 nm ~ 800 nm and 1500 nm ~ 5000 nm and then we analyzed species during propellant combustion.

추진제를 고에너지 금속 분말 연소시스템에 점화원으로 적용을 위한 기초 연구로서 strand burner를 이용하여 HTPB/AP/Al, HTPE/AP/Al 추진제의 연소특성을 고찰하였다. 실험은 아르곤을 사용하여 ~300 psia 까지 가압하였으며, 2개의 석영창을 이용하여 가시화하였다. 추진제 점화를 위해서 10 W의 $CO_2$ 레이저를 사용하였으며, 연소 속도 측정은 초고속 카메라를 활용한 프레임 분석 기법 및 광다이오드를 이용한 연소시간 분석 기법을 적용하였다. 스펙트로메터를 이용하여 300 nm ~ 800 nm, 1500 nm ~ 5000 nm 의 방출 스펙트럼을 분석하여 추진제 연소반응 시 발생하는 화학종을 확인하였다.

Keywords

References

  1. Kuo, K. K. and Summerfield, M., "Fundamentals of Solid Propellant Combustion," Vol. 90, 1984
  2. Summerfield, M., Sutherland, G. S., Webb, M. J., Tabak, H. J., and Hall, K. P., "Bumig Mechanism of Ammonium Perchlorate Propellants," Solid Propel1ants Rocket Research, Academic press, NewYork, 1960
  3. 유지창, 정정용, 임유진, 고승원, "고체추진제의 고압 연소속도 측정 기법," 한국추진공학회지, 제10권, 제3호, 2006, pp.60-66
  4. Carro, R., Arvanetes, J., Powell, A., Stephens, M., Petersen, E., and Smith, C., "High-Pressure Testing of Composite Solid Propellant Mixtures: Burner Facility Characterization," AIAA Paper 2005-3617
  5. Stephens, M. A., Sammet, T., Carro, R., LePage, A., Reid, D., Seal, S., and Petersen, E., "New Additives for Modifying the Burn Rate of Composite Solid Rocket Propellants," AIAA Paper 2006-4948
  6. Petersen, E. and Arvanetes J., "Monitoring strand burner combustion products using emission spectroscopy," AIAA paper 2007-5767
  7. Arvanetes, J. C., "Design and Implementation of an Emission Spectroscopy Diagnostic in a High-Pressure Strand Burner for the Study of Solid Propellant Combustion," M.S. Thesis, University of Central Florida, 2004
  8. Mamen, J., Goroshin, S., and Higgins, A., "Spectral Structure of the Aluminum Dust Flame," 20th International Colloquium on the Dynamics of Explosions and Reactive Systems, 2005
  9. Weiser, V. and Eisenreich, N., "Fast Emission Spectroscopy for a Better Understanding of Pyrotechnic Combustion Behavior," Propellants, Explosives, Pyrotechnics, Vol. 30, No. 1, 2005
  10. 박영규, 유지창, 김인철, 이태호, "Vaccum Strand burner를 이용한 혼합형 고체 추진제의 저압 연소특성 연구," 한국추진공학회지, 제3권, 제1호, 1999, pp.95-103
  11. 이상협, 임지환, 윤웅섭, "물을 산화제로 하는 나노 알루미늄 분말 연소의 압력 민감도 실험," 한국추진공학회 춘계학술대회, 2010
  12. Avital, G., Cohen, Y., and Gamss, L., "Experimental and computational study of infrared emission from underexpanded rocket exhaust plumes," Journal of thermophysics and heat transfer, Vol. 15, No. 4, 2001
  13. Fitzgerald, R. P. and Brewster, M. Q., "AP/HTPB laminate propellant flame structure: Fuel-lean intrinsic instability," Proceedings of the combustion institute, 2007, pp.2071-2078
  14. Edwards, T. and Weaver, D. P, "Investigation of high pressure solid propellant combustion chemistry using emission spectroscopy," Journal of Propulsion, Vol. 2, No. 3, 1986

Cited by

  1. A Steam-Plasma Igniter for Aluminum Powder Combustion vol.17, pp.5, 2015, https://doi.org/10.1088/1009-0630/17/5/06