• Title/Summary/Keyword: Punching

Search Result 432, Processing Time 0.023 seconds

An Experimental Study on the Stress Behavior of Coped Stringers in Steel Railway Bridge - II : Repair · Strengthening Method (철도교 세로보 절취부에서의 응력거동에 관한 실험적 연구 - II : 보수·보강 방법)

  • Li, Guang Ri;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.307-313
    • /
    • 2009
  • In this study, in order to research the repair-strengthening methods, when fatigue crack occurs in the coped stringers of a steel railway bridge, we manufacture the full size of crossbeam-stringer and floor system model. Also the experimental test is performed on the coped stringers applying the repair-strengthening methods using the stop hole, combination plate, connection plate, bracket, and so on. The results indicate that, the most effective method is to set up connection plate and bracket in the top flange and bottom flange of the stringers, while we can consider the method of punching stop holes in the end of the crack as a subsidiary method. It is necessary to set up the combination plate when the length of crack is quite long.

Unified modelling approach with concrete damage plasticity model for reliable numerical simulation: A study on thick flat plates under eccentric loads

  • Mohamed H. El-Naqeeb;Reza Hassanli
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.307-328
    • /
    • 2024
  • The concrete damage plasticity (CDP) model is widely used to simulate concrete behaviour using either implicit or explicit analysis methods. To effectively execute the models and resolve convergence issues in implicit analysis, activating the viscosity parameter of this material model is a common practice. Despite the frequent application of implicit analysis to analyse concrete structures with the CDP model, the viscosity parameter significantly varies among available models and lacks consistency. The adjustment of the viscosity parameter at the element/structural level disregards its indirect impact on the material. Therefore, the accuracy of the numerical model is confined to the validated range and might not hold true for other values, often explored in parametric studies subsequent to validations. To address these challenges and develop a unified numerical model for varied conditions, a quasi-static analysis using the explicit solver was conducted in this study. Fifteen thick flat plates tested under load control with different geometries and different eccentric loads were considered to verify the accuracy of the model. The study first investigated various concrete material behaviours under compression and tension as well as the concrete tensile strength to identify the most reliable models from previous methodologies. The study compared the results using both implicit and explicit analysis. It was found that, in implicit analysis, the viscosity parameter should be as low as 0.0001 to avoid affecting material properties. However, at the structural level, the optimum value may need adjustment between 0.00001 to 0.0001 with changing geometries and loading type. This observation raises concerns about further parametric study if the specific value of the viscosity parameter is used. Additionally, activating the viscosity parameter in load control simulations confirmed its inability to capture the peak load. Conversely, the unified explicit model accurately simulated the behaviour of the test specimens under varying geometries, load eccentricities, and column sizes. This study recommends restricting implicit solutions to the viscosity values proposed in this research. Alternatively, for highly nonlinear problems under load control simulation, explicit analysis stands as an effective approach, ensuring unified parameters across a wide range of applications without convergence problems.

Influence of Column Aspect Ratio on the Hysteretic Behavior of Slab-Column Connection (슬래브-기둥 접합부의 이력거동에 대한 기둥 형상비의 영향)

  • Choi, Myung-Shin;Cho, In-Jung;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.515-525
    • /
    • 2007
  • In this investigation, results of laboratory tests on four reinforced concrete flat plate interior connections with elongated rectangular column support which has been used widely in tall residential buildings are presented. The purpose of this study is to evaluate an effect of column aspect ratio (${\beta}_c={c_1}/{c_2}$=side length ratio of column section in the direction of lateral loading $(c_1)$ to the direction of perpendicular to $c_1$) on the hysteretic behavior under earthquake type loading. The aspect ratio of column section was taken as $0.5{\sim}3\;(c_1/c_2=1/2,\;1/1,\;2/1,\;3/1)$ and the column perimeter was held constant at 1200mm in order to achieve nominal vertical shear strength $(V_c)$ uniformly. Other design parameters such as flexural reinforcement ratio $(\rho)$ of the slab and concrete strength$(f_{ck})$ was kept constant as ${\rho}=1.0%$ and $f_{ck}=40MPa$, respectively. Gravity shear load $(V_g)$ was applied by 30 percent of nominal vertical shear strength $(0.3V_o)$ of the specimen. Experimental observations on punching failure pattern, peak lateral-load and story drift ratio at punching failure, stiffness degradation and energy dissipation in the hysteresis loop, and steel and concrete strain distributions near the column support were examined and discussed in accordance with different column aspect ratio. Eccentric shear stress model of ACI 318-05 was evaluated with experimental results. A fraction of transferring moment by shear and flexure in the design code was analyzed based on the test results.

Production of Calves Following Transfer of Sexed Hanwoo Embryos and Hanwoo Embryos Cultured In Vitro (한우 체외 수정란 및 성 감별 수정란 이식에 의한 송아지 생산)

  • Min, Chan-Sik;Song, Sang-Hyun;Song, Gwi-Dong;Chung, Woo-Jae;Rho, Chi-Won;Kang, Yang-Soo;Park, Choong-Saeng;Kong, Il-Keun
    • Journal of Embryo Transfer
    • /
    • v.23 no.1
    • /
    • pp.43-49
    • /
    • 2008
  • This study was carried out to examine the efficiency of biopsy methods, and the pregnancy rate, calving and abortion rates, gestation length and birth weight of Hanwoo calves following transfer of fresh, frozen and sexed Hanwoo embryos produced in vitro. The survivability of biopsied embryos was 80.0 and 90.0% using aspiration and punching methods at 24 h after culturing, respectively. The ratios of male and female embryos were 42.1 and 52.6%, respectively, and the percentage of sex unidentified was 5.3%. Pregnancy rates was not significantly different between hCG and control group (46.4 vs. 38.5%), fresh and frozen embryos (41.3 vs. 35.0%), and sexed and IVP embryos (27.5 vs. 41.2%) (p>0.05). Calving and abortion rates of IVP and sexed embryos were not significantly different in calving (85.0 vs. 87.0%) and in abortion (15.2 vs. 13.3%) (p<0.05). Gestation length of IVP and sexed calves were 281.3 and 288.2 days in female and 283.0 and 282.3 days in male, and the birth weight of IVP and sexed calves were 23.6 and 25.0 kg in female and 24.6 and 23.8 kg in male, respectively. There were no difference in gestation length and birth weight between IVP embryos and sexed embryos (p>0.05). Administration of hCG to recipients did not improve the pregnancy rate following transfer of Hanwoo embryos produced in vitro and sexed embryos. Although the production of calves derived from sexed Hanweoo embryos cultured in vitro can be obtained, the efficiency of sexed calves production need to be improved in biopsy methods and pregnancy rate. Further study should be focused on the improvement of pregnancy rates for commercial application of embryo transfer.

Analysis of Reinforcement Effect of Hollow Modular Concrete Block on Sand by Laboratory Model Tests (실내모형실험을 통한 모래지반에서의 중공블록 보강효과 분석)

  • Lee, Chul-Hee;Shin, Eun-Chul;Yang, Tae-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.49-62
    • /
    • 2022
  • The hollow modular concrete block reinforced foundation method is one of the ground reinforcement foundation methods that uses hexagonal honeycomb-shaped concrete blocks with mixed crushed rock to reinforce soft grounds. It then forms an artificial layered ground that increases bearing capacity and reduces settlement. The hollow modular honeycomb-shaped concrete block is a geometrically economical, stable structure that distributes forces in a balanced way. However, the behavioral characteristics of hollow modular concrete block reinforced foundations are not yet fully understood. In this study, a bearing capacity test is performed to analyze the reinforcement effectiveness of the hollow modular concrete block through the laboratory model tests. From the load-settlement curve, punching shear failure occurs under the unfilled sand condition (A-1-N). However, the filled sand condition (A-1-F) shows a linear curve without yielding, confirming the reinforcement effect is three times higher than that of unreinforced ground. The bearing capacity equation is proposed for the parts that have contact pressure under concrete, vertical stress of hollow blocks, and the inner skin friction force from horizontal stress by confining effect based on the schematic diagram of confining effect inside a hollow modular concrete block. As a result of calculating the bearing capacity, the percentage of load distribution for contact force on the area of concrete is about 65%, vertical force on the area of hollow is 16.5% and inner skin friction force of area of the inner wall is about 18.5%. When the surcharge load is applied to the concrete part, the vertical stress occurs on the area of the hollow part by confining effect first. Then, in the filled sand in the hollow where the horizontal direction is constrained, the inner skin friction force occurs by the horizontal stress on the inner wall of the hollow modular concrete block. The inner skin friction force suppresses the punching of the concrete part and reduces contact pressure.

Comparison on the Behavior according to Shapes of Tension Web member in gap K-joints in Cold-formed Square Hollow Sections (인장웨브재 형태에 따른 각형강관 갭K형 접합부의 거동 비교)

  • Jeong, Sang Min;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.561-568
    • /
    • 2005
  • The object of this paper is to determine appropriateness for use of high-strength tensile bar as a tension web member. The gap K-joint of tensile bar types were compared with gap K-joint of square hollow section (SHS) types. For the same width-to-thickness ratio ($2{\gamma}=33.3$ ), tests were performed on four specimens of the SHS type and eight specimens of the tensile bar type. The comparison of capacity with the experimental results showed a capacity of the SHS type joint to be higher than that of the tensile bartype joint for the same brace-to-chord width ratio. Moreover, the capacity of the SHS type joints increased proportionally to the width ratio ${\beta}$), while tensile bar type joints increased as the tension width ratio (${\beta}2$). In failure mode, SHS-type specimens showed local buckling of the compression brace and plastic failure was observed between the tension brace and chord face, and with the tensile bar type specimens there appeared punching shear failure of the chord face at the toe of the connection plate. It is, therefore, concluded that width-to-thickness ratio should be lower than that of the hollow-section type and the relation between tension and compression width ratio should be considered.

Design of Flat Plate Systems Using the Modified Equivalent Frame Method (수정된 등가골조법을 이용한 플랫플레이트 시스템의 설계)

  • Park, Young-Mi;Oh, Seung-Yong;Han, Sang-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2008
  • In general, flat plate systems have been used as a gravity load resisting system (GLRS) in building. Thus, this system should be constructed with lateral force resisting system (LFRS) such as shear walls and brace frames. GLRS should retain the ability to undergo the lateral drift associated with the LFRS without loss of gravity load carrying capacity. And flat plate system can be designed LFRS as ordinary moment frame with the special details. Thus, flat plate system designed as GLRS or LFRS should be considered internal forces (e.g., unbalanced moments) and lateral deformation generated in vicinity of slab joints render the system more susceptible to punching shear. ACI 318 (2005) allows the direct design method, equivalent frame method under gravity loads and allows the finite-element models, effective beam width models, and equivalent frame models under lateral loads. These analysis methods can produce widely different result, and each has advantage and disadvantages. Thus, it is sometimes difficult for a designer to select an appropriate analysis method and interpret the results for design purposes. This study is to help designer selecting analysis method for flat plate system and to verify practicality of the modified equivalent frame method under lateral loads. This study compared internal force and drift obtained from frame methods with those obtained from finite element method under gravity and lateral loads. For this purposes, 7 story building is considered. Also, the accuracy of these models is verified by comparing analysis results using frame methods with published experimental results of NRC slab.

Analysis of Stratified Rock under Vertical Load in Pile Foundation of Wind Turbine Using Circular Foundation Analysis Method with Equivalent Effective Width (등가유효폭을 가진 원형기초해석법을 이용한 풍력발전기 말뚝기초의 연직하중에 대한 층상암반 해석)

  • Kim, Dohan;Park, Sangyeol;Moon, Kyoungtae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2411-2425
    • /
    • 2013
  • In the design of pile foundation on the rock layer in the stratified structure with sedimentary and rock layers, the structural analysis of the stratified rock layer is required to determine the failure modes (flexural failure, punching shear failure or end bearing failure) and the bearing capacity of the rock layer. However, the existing usable Elastic Plate Analysis Method (EPAM) suggested by ACI committee 436 and Korean Code Requirements for Structural Foundation Design is very complex, and engineers have many difficulties in using it. Therefore, in this research, we proposed the relatively simple Circular Foundation Analysis Method (CFAM) with the concept and the equation of the equivalent effective width (radius) instead of the complex EPM, and the related equations of bending moment and shear force to be equal to the analysis results of EPAM. As a result, the proposed CFAM using the equivalent effective width (radius) is simple and convenient to use, and the analysis results of it are very good in their accuracies comparing those of EPAM and Finite Element Method.

Adhesive Strength and Electrochemical Properties of Li(Ni0.5Co0.2Mn0.3)O2Electrodes with Lean Binder Composition (바인더 함량에 따른 Li(Ni0.5Co0.2Mn0.3)O2 전극의 접착력 및 전기화학 성능에 관한 연구)

  • Roh, Youngjoon;Byun, Seoungwoo;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.3
    • /
    • pp.47-54
    • /
    • 2018
  • To maximize the areal capacity($mAh\;cm^{-2}$) of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$(NCM523) electrode with the same loading level of $15mg\;cm^{-2}$, three NCM523 electrodes with 4, 2, and 1 wt% poly(vinylidene fluoride)(PVdF) binder content are fabricated. Due to the delamination issue of electrode composite at the edge during punching process, the 1 wt% electrode is excluded for further evaluation. When the PVdF binder content decreases from 4 to 2 wt%, both adhesion strength and shear stress decrease from 0.4846 to $0.2627kN\;m^{-1}$ by -46% and from 3.847 to 2.013 MPa by -48%, respectively. Regardless of these substantial decline of mechanical properties, their initial electrochemical properties such as initial coulombic efficiency and voltage profile are almost the same. However, owing to high loading level, the 2 wt% electrode not only exhibits worse cycle performance than the 4 wt% electrode, but also cannot maintain its mechanical integrity only after 80 cycles. Therefore, if the binder content is reduced to increase the area capacity, the mechanical properties as well as the cycle performance must be carefully evaluated.

Research of Non-integeral Spatial Interpolation for Precise Identifying Soybean Location under Plastic Mulching

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-seung;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.156-156
    • /
    • 2017
  • Most crop damages have been occurred by vermin(e.g., wild birds and herbivores) during the period between seeding and the cotyledon level. In this study, to minimize the damage by vermin and acquire the benefits such as protection against weeds and maintenance of water content in soil, immediately vinyl mulching after seeding was devised. Vinyl mulching has been generally covered with black color vinyl, that crop seeding locations cannot be detected by visible light range. Before punching vinyl, non-contact and non-destructive methods that can continuously determine the locations are necessary. In this study, a crop position detection method was studied that uses infrared thermal image sensor to determine the cotyledon position under vinyl mulch. The moving system for acquiring image arrays has been developed for continuously detecting crop locations under plastic mulching on the field. A sliding mechanical device was developed to move the sensor, which were arranged in the form of a linear array, perpendicular to the array using a micro-controller integrated with a stepping motor. The experiments were conducted while moving 4.00 cm/s speed of the IR sensor by the rotational speed of the stepping motor based on a digital pulse width modulation signal from the micro-controller. The acquired images were calibrated with the spatial image correlation. The collected data were processed using moving averaging on interpolation to determine the frame where the variance was the smallest in resolution units of 1.02 cm. For this study, the spline method was relatively faster than the other polynomial interpolation methods, because it has a lower maximum order of formulation when using a system such as the tridiagonal linear equation system which provided the capability of real-time processing. The temperature distribution corresponding to the distance between the crops was 10 cm, and the more clearly the leaf pattern of the crop was visually confirmed. The frequency difference was decreased, as the number of overlapped pixels was increased. Also the wave pattern of points where the crops were recognized were reduced.

  • PDF