• Title/Summary/Keyword: Pump Case

Search Result 523, Processing Time 0.019 seconds

Development of a Conversion Unit converting the existing air conditioner to Heat Pump System for the Emergency Shelter (재해임시주거 냉난방을 위하여 기존 에어컨을 열펌프로 전환하는 변환기 개발)

  • Song, Heon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.77-84
    • /
    • 2011
  • Korea and some other countries located in the northern hemisphere employ the air conditioner for the space cooling in the hot summer season and also some kinds of heaters for the space heating in the cold winter season. Especially in Korea, a great number of air conditioners of about 12,700,000 sets have been used these days. However, they are used for a short operation period of only 58 days a year, which results in the material and economic losses. To solve this problem and employ this system for the emergency shelter, a new conversion unit which could convert the existing air conditioner to a heat pump system for simultaneous heating and cooling was developed in this study, and the thermal performance was tested. The results indicated that the indoor air could be heated from $27^{\circ}C$ to $39^{\circ}C$ by the air conditioner converted to a heat pump system with the ambient temperature variation of $-10^{\circ}C{\sim}10^{\circ}C$, and cooled from $20^{\circ}C$ to $15^{\circ}C$ by the converted system with the ambient temperature variation of $20^{\circ}C{\sim}35^{\circ}C$. And also the heating COP increased from 3.3 to 5.3 in case of the heat exchange of the super cooling(HESC) circuit and from 3.0 to 4.0 in case of the By-pass with the ambient temperature variation of $-10^{\circ}C{\sim}10^{\circ}C$, respectively, whereas the cooling COP decreased from 3.1 to 2.1with the increase of the ambient temperature from $20^{\circ}C$ to $35^{\circ}C$.

Compressible Simulation of Rotor-Stator Interaction in Pump-Turbines

  • Yan, Jianping;Koutnik, Jiri;Seidel, Ulrich;Hubner, Bjorn
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.315-323
    • /
    • 2010
  • This work investigates the influence of water compressibility on pressure pulsations induced by rotor-stator interaction (RSI) in hydraulic machinery, using the commercial CFD solver ANSYS-CFX. A pipe flow example with harmonic velocity excitation at the inlet plane is simulated using different grid densities and time step sizes. Results are compared with a validated code for hydraulic networks (SIMSEN). Subsequently, the solution procedure is applied to a simplified 2.5-dimensional pump-turbine configuration in prototype with different speeds of sound as well as in model scale with an adapted speed of sound. Pressure fluctuations are compared with numerical and experimental data based on prototype scale. The good agreement indicates that the scaling of acoustic effects with an adapted speed of sound works well. With respect to pressure fluctuation amplitudes along the centerline of runner channels, incompressible solutions exhibit a linear decrease while compressible solutions exhibit sinusoidal distributions with maximum values at half the channel length, coinciding with analytical solutions of one-dimensional acoustics. Furthermore, in compressible simulation the amplification of pressure fluctuations is observed from the inlet of stay vane channels to the spiral case wall. Finally, the procedure is applied to a three-dimensional pump configuration in model scale with adapted speed of sound. Normalized Pressure fluctuations are compared with results from prototype measurements. Compared to incompressible computations, compressible simulations provide similar pressure fluctuations in vaneless space, but pressure fluctuations in spiral case and penstock may be much higher.

Traumatic Aortic Rupture - Report of 4 Case - (외상성 대동맥 파열: 4례 보고)

  • 윤태진
    • Journal of Chest Surgery
    • /
    • v.24 no.7
    • /
    • pp.725-731
    • /
    • 1991
  • Four patients with traumatic rupture of aorta underwent operative repair at Seoul national university hospital. All cases were confirmed by preoperative aortography. Rupture site was aortic isthmus or just distal to it. Operations were somewhat delayed due to the low degree of suspicion and difficulties in diagnosis: ranging from 5 hours to 8 days. Operation was performed as same manners in all cases: resection of the ruptured portion and tubular woven dacron graft interposition in conjunction with shunt or bypass procedures, TDMAC-Heparin shunt between ascending and descending aorta was used in 3 cases, and LA-femoral centrifugal pump was used in one case. There were no intraoperative or postoperative mortality. Hoarseness was developed in all patients but paraplegia or other significant complications were not found in any of patients. We concluded that 1] high degree of suspicion is essential in the early diagnosis and treatment of traumatic aortic rupture and 2] any kind of shunt or bypass procedure is necessary in operative repair of traumatic aortic rupture and use of centrifugal pump without systemic heparinization is easier and safer procedure than others for the maintenance of adequate distal flow.

  • PDF

Successful Use of Bortezomib for Recurrent Progressive Familial Intrahepatic Cholestasis Type II After Liver Transplantation: A Pediatric Case with a 9-Year Follow-Up

  • Yu Gyoung Bak;Ho Jung Choi;Yeong Eun Kim;Seak Hee Oh;Kyung Mo Kim
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.27 no.1
    • /
    • pp.71-76
    • /
    • 2024
  • Recurrence of progressive familial intrahepatic cholestasis (PFIC) type II poses challenges during postoperative liver transplant care. Posttransplant patients with PFIC type II risk developing recurrent cholestasis with normal gamma-glutamyl transferase activity, which mimics the original bile salt export pump (BSEP) protein deficiency and is related to a form of immunoglobulin G antibody (anti-BSEP)-mediated rejection. Bortezomib effectively induces apoptosis of actively antibody-producing plasma cells that may have a role in antibodymediated rejection. In this case, we used bortezomib to treat PFIC type II recurrence after liver transplantation in a child.

"On-Pump" CABG on the Beating Heart - Two case report - (심폐바이패스하의 심박동상태에서 시행한 관상동맥우회로술)

  • 신종목;김기봉
    • Journal of Chest Surgery
    • /
    • v.32 no.5
    • /
    • pp.480-483
    • /
    • 1999
  • The widely accepted method for coronary artery bypass grafting(CABG) is performing the distal coronary artery anastomoses on the flaccid and nonbeating heart with the aid of cardiopulmonary bypass(CPB) and cardioplegic arrest. However, current cardioplegic techniques are not consistent in avoiding myocardial ischemic damages especially in high risk patients undergoing CABG. In this regard, "Off-Pump" seems to be an ideal method for preventing myocardial ischemic damage and adverse effects during CPB. However, "Off-pump" CABG is not always technically feasible. We report 2 cases of "On-pump" CABG performed on the beating heart in high risk patients; The first patient had left ventricular dysfunction(Ejection Fraction=25%), and the second patient had cardiogenic shock after percutaneous transluminal coronary angioplasty.

  • PDF

An Experimental Study on the Performance of a Heat Pump for the Cold Climate (한랭지용 열펌프의 저온난방 성능에 관한 실험적 연구)

  • Ju Jeong-Dong;Bae Kyung-Su;Hwang Young-Kyu;Lee Yun-Yong;Jeong Gyoo-Ha;Oh Sang-Kyong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.39-46
    • /
    • 2005
  • The present study concerns an experimental study of a R-22 heat pump system consisted of liquid and liquid heat exchangers. The test was performed for various systems of a single-, tandem-, and two stage-cycle at the same environmental conditions of temperature. Various experiments of the heat pump system were peformed to compare the heating capacity and COP, when the outdoor temperature is near $-15^{\circ}C$ and the indoor temperature is $20^{\circ}C.$ As the results of the present study, the system of Tandem(parallel) cycle showed the best heating performance, while the discharge temperature of refrigerant was too high. In case of the system of two stage cycle, the performance characteristics were significantly improved by employing the inter cooler.

Diagnosis of Cryogenic Pump-Motor Systems Using Vibration and Current Signature Analysis

  • Choi Byeong-Keun;Kim Hak-Eun;Gu Dong-Sik;Kim Hyo-Jung;Jeong Han-Eul
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.972-980
    • /
    • 2006
  • In general, to send out natural gas via a pipeline network across the nation in LNG terminal, high-pressure cryogenic pump supply highly compressed LNG to high-pressure vaporization facilities. The Number of cryogenic pumps determined the send-out amount in LNG receiving terminal. So it is main equipment at LNG production process and should be maintained on best conditions. In this paper, to find out the cause of high vibration at cryogenic pumps-motor system in LNG terminal, vibration spectrum analysis and motor current signature analysis have been performed together. Through the analysis, motor rotor bar problems are estimated by the vibration analysis and confirmed by the current analysis. So, it is demonstrated through the case study in this paper, how performing vibration analysis and current signature analysis together can reliable diagnosis rotor bar problems in pump-motor system.

A Study on Dynamic Analysis of Vertical Mixed-Flow Pump for Nuclear Power Plants (원자력 발전소용 입형 사류펌프의 동적해석에 관한 연구)

  • Seo, Y.S.;Lim, W.S.;Chung, H.T.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.71-77
    • /
    • 2006
  • This study introduces the seismic qualification of safety related equipments for nuclear power plants to verify the possibility of resonance in regard to the operating speed and the structural integrity due to external piping nozzle loads as well as seismic dynamic loads using El-Centro earthquake, which was occurred in the 1940's previously. As a first step, it is necessary to investigate the natural frequency of the vertical mixed flow pump in order to determine whether static or dynamic equipment comparing with seismic cut-off frequency, 33hz. Also the normal mode analysis was carried out with the introduction of seismic redesign straint at the middle of vertical pump to increase the natural frequency. In terms of structural integrity, the application of static analysis with normal, upset and faulted nozzle loads event was presented for the comparison of material allowable stress. Also the dynamic analysis was performed to show the design adequacy through the application to the case of El-Centro earthquake.

  • PDF

Comparative Study on Performance of Wet-type and Dry-type Floor Heating Systems Using Geothermal Heat Pump (지열히트펌프를 이용한 습식.건식 바닥난방 성능평가 연구)

  • Lee, Byoung-Doo;Lee, Se-Jin;Lee, Dae-Woo;Oh, Sung-Hae;Nam, Woo-Dong
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.60-65
    • /
    • 2009
  • The present study was conducted for a comparative evaluation of wet and dry floor heating systems using geothermal heat pump. We circulated hot water from geothermal heat pump which is $10{\sim}15^{\circ}C$ lower than that from boiler. In order to access indoor temperature ($25^{\circ}C$) it took 74 minutes for dry type and 247 minutes for wet type. Average floor temperature was $23.9^{\circ}C$ for wet type and $32.7^{\circ}C$ for dry type. Energy saving rate gradually increased by 66% after 138 minutes. As a result, in case of floor heating system using low temperature circulation water, dry type was more practicable for stable floor heating than wet type in terms of floor temperature and access time to indoor set temperature.

  • PDF

Study on the Performance Prediction Simulation of the Heat Pump System using Solar and Geothermal Heat Source (태양열 및 지열 이용 히트펌프 시스템의 성능예측 시뮬레이션에 관한 연구)

  • Nam, Yu-Jin;Gao, Xin-Yan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.75-81
    • /
    • 2014
  • Recently, the use of renewable energy has been attracted due to the interest in energy-saving and the reduction of CO2 emission. In order to reduce the energy consumption of the cooling and the heating in the field of the architectural engineering, heat pump systems using renewable energy have been developed and used in various applications. In many researches, integrated heat pump systems are suggested which use solar and geothermal heat as the heat source for cooling and heating. However, it is still difficult to predict the performance of the systems, because the characteristic of heat exchange in each system is complicated and various. In this system, the performance prediction simulation of the heat pump was developed using a dynamic simulation model. This paper describes the summary of the suggested systems and the result of the simulation. The average temperature of the heat source, heating loads and COP were calculated with the cases of different local conditions, different system composition and different operation time by TRNSYS 17.