• Title/Summary/Keyword: Pultrusion

Search Result 85, Processing Time 0.031 seconds

A Study on the Pultrusion of Hybrid Composite Tube (하이브리드 복합재료 튜브의 Pultrusion 성형공정연구)

  • 성대영;김태욱;이광주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.180-183
    • /
    • 2001
  • Glass fiber reinforced plastic(CFHP) tent pole fabricated by the pultrusion process with unidirectional glass fiber is two times as heavy as aluminum tent pole owing to the low specific modulus The first objective of this research is the design the high strength and light weight tent pole compete with. the second is the develope glass fiber carbon fiber hybrid tent pole pultrusion process. the third is the evaluate the mechanical properties of the hybrid tent pole compare to these of the duralumin tent pole.

  • PDF

Analysis of the Pultrusion Process of Thermosetting Composites Containing Volatiles (휘발물질이 존재하는 열경화성수지 복합재료의 Pultrusion 공정 해석)

  • 김대환;이우일;김병선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.527-536
    • /
    • 1995
  • Analysis of pultrusion process for the thermosetting composites containing volatiles was performed. Degree of cure, amount of volatile evolved and pulling force were calculated for the processing variables such as die temperature and pulling speed. Cure kinetics was modeled from the data obtained by DSC(Differential Scanning Calorimeter). The volatile evolution kinetics was modeled from the data by DSC as well as TGA(Thermo Gravimetric Analyzer). The cure kinetics and volatile evolution kinetics models were incorporated into the energy equation. The resulting governing equation was solved using finite element method. Pulling force was calculated through the analysis of pressure developed inside the pultrusion die. Experiments were performed and the data were compared with the calculated results. Good agreements were observed.

A study on the drawing device and curing mold in CFRP rectangular pipe pultrusion process using a closed impregnation method (밀폐형 함침법을 이용한 CFRP 사각 파이프 인발성형에서 인발장치 및 경화금형에 관한 연구)

  • Kang, Byung-Soo;Yoo, Hyeong-Min
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.60-65
    • /
    • 2022
  • In the pultrusion process for the CFRP (Carbon fiber reinforced plastic) rectangular pipe, the drawing device is eseential which can continuously produces products and draws the carbon fiber tow. In addition, since the degree of cure changes depending on the temperature and the temperature ditribution of the curing mold changes depending on the pultrusion speed, the temperature distribution of the curing mold under certain conditions must be studied before processing. In this study, in the pultrusion process using a closed impregnation method, which has several advantages compared to the general pultrusion process using a open bath impregnation method, the drawing force required to pull the carbon fiber tows and the temperature distribution of the curing mold was analyzed to design the drawing device and the curing mold efficiently.

Analysis of the foaming behavior in pultrusion process of phenolic foam composites (발포 복합재료 Pultrusion 공정에서의 발포 거동 해석)

  • Yun, Myung-Seok;Jung, Jae-Won;Lee, Woo-Il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.130-133
    • /
    • 2005
  • An experimental and theoretical study was carried out to estimate the foaming characteristics in the pultrusion process of phenolic foam composite. For the experimental study, a lab-scale pultrusion apparatus was constructed. Methylene chloride(CH2Cl2) was used as a physical blowing agent, glass fiber roving was used as reinforcement and the polymer used was a resol type phenolic resin. Pultruded products were observed to count bubble size by a SEM(Scanning Electron Microscopy). For the theoretical study, a model for bubble growth in a gradually hardening resin was considered and solved for a few foaming conditions.

  • PDF

Experimental analysis of pultrusion process for phenolic foam composites (발포 복합재료 Pultrusion 공정의 실험적 해석)

  • Yun MyungSeok;Lee WooIl
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.143-146
    • /
    • 2004
  • Pultrusion process of phenolic foam composite is investigated. Phenolic foam composites provide heat and flame resistance with less weight. When made into foam, a variety of properties can be obtained with different bubble size and number density. In this study, effect of process variables on the foaming characteristics of phenolic resin composites during pultrusion process has been studied experimentally. The process variables considered are the heating temperature and the pulling speed as well as the mass fraction of blowing agent. Experiments were performed using a laboratory scale pultrusion apparatus. Optimal process condition was found by observing the micro-morphology.

  • PDF

Experimental analysis of pultrusion process for phenolic foam composites (발포 복합재료 Pultrusion 공정의 실험적 해석)

  • Lee WooIl;Yun MyungSeok
    • Composites Research
    • /
    • v.18 no.3
    • /
    • pp.47-52
    • /
    • 2005
  • Pultrusion process of phenolic foam composite is investigated. Phenolic foam composites provide heat and flame resistance with less weight. When made into foam, a variety of properties can be obtained with different bubble size and number density. In this study, effect of process variables on the foaming characteristics of phenolic resin composites during pultrusion process has been studied experimentally. The process variables considered are the heating temperature and the pulling speed as well as the mass fraction of blowing agent. Experiments were performed using a laboratory scale pultrusion apparatus. Optimal process condition was found by observing the micro-morphology.

A Study on the Pultrusion Process of Thermosetting Composites Considering Thermally induced Deformation (열변형을 고려한 열경화성수지 복합재료의 펄트루젼 공정에 관한연구)

  • 김대환;이우일
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.04a
    • /
    • pp.103-108
    • /
    • 1999
  • A synthesized model of pultrusion process considering thermally induced deformatiion was established. The model was composed of liquid resin flow model thermo-chemical analysis and linear elastic analysis. in order to verify the above-mentioned models several experiments were performed. A laboratory scale pultrusion line was established and glass/polyester composites were fabricated. the experimental results were compared with the calculated ones. The model successfully could estimate degree of cure pulling force and amount of process-induced deformation.

  • PDF

Characteristics of Pultruded GFRP and Buckling Behavior of Angle and Tubular Member (인발성형 GFRP 부재의 특성 변화와 앵글 및 튜브 부재의 좌굴 거동 분석)

  • 이성우;신경재;김현정
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.15-19
    • /
    • 2000
  • Recently Western countries are now beginning to use ACM (Advanced Composites Material), in the construction industry Compared with existing construction materials, ACM possesses many advantages such as light-weight, high-strength, corrosion resistant property. Among other fabrication process of ACM, pultrusion is one of the promising one for civil infrastructure application. In this paper, the structural characteristics of pultruded GFRP strip and structural members of angle and tube type were studied. For the strip, parametric studies of pultrusion process has been carried out. Considered parameters were volume fraction, temperature, pulling speed and fiber orientations. For the pultruded angle and tube, compression test and buckling analysis has been carried out. The results were compared with calculated values using coded formulae

  • PDF

Structural Stability Study of C/GFRP Composite material Traffic Light Fixture and Wind Load (인발 성형법을 이용한 C/GFRP 복합소재 신호등 부착대의 구조적 안정성에 관한 연구)

  • Na, Kyoung-Su;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.9-16
    • /
    • 2021
  • As the climate changes rapidly due to warming, it is becoming very important to ensure the stability of environmental structures. It is necessary to choose a material that withstands repeated external forces (wind loads) and satisfies members and joints that have energy absorbing power. Even if the strength of the traffic light attachment is sufficient, if the rigidity is insufficient, there is a limit to the displacement during strong winds. Excessive deformation may cause damage and fall, resulting in a safety accident. The author intends to study mechanical properties and resistance to external environment as a structural material capable of withstanding wind load (50m/sec) by fabricating a C/GFRP composite traffic light attachment using the pultrusion method (Pultrusion).